IDEAS home Printed from https://ideas.repec.org/a/spr/alstar/v109y2025i1d10.1007_s10182-024-00516-z.html
   My bibliography  Save this article

Change point detection in high dimensional covariance matrix using Pillai’s statistics

Author

Listed:
  • Seonghun Cho

    (Inha University)

  • Minsup Shin

    (Seoul National University)

  • Young Hyun Cho

    (Purdue University)

  • Johan Lim

    (Seoul National University)

Abstract

This research proposes a method to test and estimate change points in the covariance structure of high-dimensional multivariate series data. Our method uses the trace of the beta matrix, known as Pillai’s statistics, to test the change in covariance matrix at each time point. We study the asymptotic normality of Pillai’s statistics for testing the equality of two covariance matrices when both sample size and dimension increase at the same rate. We test the existence of a single change point in a given time period using Cauchy combination test, the test using an weighted sum of Cauchy transformed p-values, and estimate the change point as the point whose statistic is the greatest. To test and estimate multiple change points, we use the idea of the wild binary segmentation and repeatedly apply the procedure for a single change point to each segmented period until no significant change point exists. We numerically provide the size and power of our method. We finally apply our procedure to finding abnormal behavior in the investment of a private equity fund.

Suggested Citation

  • Seonghun Cho & Minsup Shin & Young Hyun Cho & Johan Lim, 2025. "Change point detection in high dimensional covariance matrix using Pillai’s statistics," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 109(1), pages 53-84, March.
  • Handle: RePEc:spr:alstar:v:109:y:2025:i:1:d:10.1007_s10182-024-00516-z
    DOI: 10.1007/s10182-024-00516-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10182-024-00516-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10182-024-00516-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bai, Jushan, 1997. "Estimating Multiple Breaks One at a Time," Econometric Theory, Cambridge University Press, vol. 13(3), pages 315-352, June.
    2. Cho, Haeran & Fryzlewicz, Piotr, 2015. "Multiple-change-point detection for high dimensional time series via sparsified binary segmentation," LSE Research Online Documents on Economics 57147, London School of Economics and Political Science, LSE Library.
    3. Luger, Richard, 2006. "Exact permutation tests for non-nested non-linear regression models," Journal of Econometrics, Elsevier, vol. 133(2), pages 513-529, August.
    4. Fryzlewicz, Piotr, 2014. "Wild binary segmentation for multiple change-point detection," LSE Research Online Documents on Economics 57146, London School of Economics and Political Science, LSE Library.
    5. Chen, Kuo-mei & Cohen, Arthur & Sackrowitz, Harold, 2011. "Consistent multiple testing for change points," Journal of Multivariate Analysis, Elsevier, vol. 102(10), pages 1339-1343, November.
    6. Paul Glasserman & Wanmo Kang, 2014. "OR Forum—Design of Risk Weights," Operations Research, INFORMS, vol. 62(6), pages 1204-1220, December.
    7. Yaowu Liu & Jun Xie, 2020. "Cauchy Combination Test: A Powerful Test With Analytic p-Value Calculation Under Arbitrary Dependency Structures," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(529), pages 393-402, January.
    8. Haeran Cho & Piotr Fryzlewicz, 2015. "Multiple-change-point detection for high dimensional time series via sparsified binary segmentation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 77(2), pages 475-507, March.
    9. Bodnar, Taras & Dette, Holger & Parolya, Nestor, 2019. "Testing for independence of large dimensional vectors," MPRA Paper 97997, University Library of Munich, Germany, revised May 2019.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qing Yang & Yu-Ning Li & Yi Zhang, 2020. "Change point detection for nonparametric regression under strongly mixing process," Statistical Papers, Springer, vol. 61(4), pages 1465-1506, August.
    2. Fryzlewicz, Piotr, 2020. "Detecting possibly frequent change-points: Wild Binary Segmentation 2 and steepest-drop model selection," LSE Research Online Documents on Economics 103430, London School of Economics and Political Science, LSE Library.
    3. Li, Degui, 2024. "Estimation of Large Dynamic Covariance Matrices: A Selective Review," Econometrics and Statistics, Elsevier, vol. 29(C), pages 16-30.
    4. Chen, Likai & Wang, Weining & Wu, Wei Biao, 2019. "Inference of Break-Points in High-Dimensional Time Series," IRTG 1792 Discussion Papers 2019-013, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    5. Cho, Haeran & Kirch, Claudia, 2024. "Data segmentation algorithms: Univariate mean change and beyond," Econometrics and Statistics, Elsevier, vol. 30(C), pages 76-95.
    6. Ma, Chenchen & Tu, Yundong, 2023. "Group fused Lasso for large factor models with multiple structural breaks," Journal of Econometrics, Elsevier, vol. 233(1), pages 132-154.
    7. Pang, Tianxiao & Du, Lingjie & Chong, Terence Tai-Leung, 2021. "Estimating multiple breaks in nonstationary autoregressive models," Journal of Econometrics, Elsevier, vol. 221(1), pages 277-311.
    8. Mengjia Yu & Xiaohui Chen, 2021. "Finite sample change point inference and identification for high‐dimensional mean vectors," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(2), pages 247-270, April.
    9. Hajra Siddiqa & Sajid Ali & Ismail Shah, 2021. "Most recent changepoint detection in censored panel data," Computational Statistics, Springer, vol. 36(1), pages 515-540, March.
    10. Barigozzi, Matteo & Cho, Haeran & Fryzlewicz, Piotr, 2018. "Simultaneous multiple change-point and factor analysis for high-dimensional time series," Journal of Econometrics, Elsevier, vol. 206(1), pages 187-225.
    11. Oleksandr Gromenko & Piotr Kokoszka & Matthew Reimherr, 2017. "Detection of change in the spatiotemporal mean function," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(1), pages 29-50, January.
    12. Jiang, Feiyu & Zhao, Zifeng & Shao, Xiaofeng, 2023. "Time series analysis of COVID-19 infection curve: A change-point perspective," Journal of Econometrics, Elsevier, vol. 232(1), pages 1-17.
    13. Cui, Junfeng & Wang, Guanghui & Zou, Changliang & Wang, Zhaojun, 2023. "Change-point testing for parallel data sets with FDR control," Computational Statistics & Data Analysis, Elsevier, vol. 182(C).
    14. V. Brault & C. Lévy-Leduc & A. Mathieu & A. Jullien, 2018. "Change-Point Estimation in the Multivariate Model Taking into Account the Dependence: Application to the Vegetative Development of Oilseed Rape," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 23(3), pages 374-389, September.
    15. Liu, Bin & Zhang, Xinsheng & Liu, Yufeng, 2022. "High dimensional change point inference: Recent developments and extensions," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    16. Jian Huang & Yuling Jiao & Lican Kang & Yanyan Liu & Xinfeng Yang, 2024. "Computation and analysis of change points with different jump locations in high-dimensional regression," Statistical Papers, Springer, vol. 65(3), pages 1703-1729, May.
    17. Shu, Lei & Chen, Yu & Zhang, Weiping & Wang, Xueqin, 2022. "Spatial rank-based high-dimensional change point detection via random integration," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    18. Holger Dette & Theresa Eckle & Mathias Vetter, 2020. "Multiscale change point detection for dependent data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(4), pages 1243-1274, December.
    19. S. O. Tickle & I. A. Eckley & P. Fearnhead, 2021. "A computationally efficient, high‐dimensional multiple changepoint procedure with application to global terrorism incidence," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(4), pages 1303-1325, October.
    20. Rice, Gregory & Zhang, Chi, 2022. "Consistency of binary segmentation for multiple change-point estimation with functional data," Statistics & Probability Letters, Elsevier, vol. 180(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:alstar:v:109:y:2025:i:1:d:10.1007_s10182-024-00516-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.