IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v203y2025ics016794732400166x.html
   My bibliography  Save this article

Accelerating computation: A pairwise fitting technique for multivariate probit models

Author

Listed:
  • Delporte, Margaux
  • Verbeke, Geert
  • Fieuws, Steffen
  • Molenberghs, Geert

Abstract

Fitting multivariate probit models via maximum likelihood presents considerable computational challenges, particularly in terms of computation time and convergence difficulties, even for small numbers of responses. These issues are exacerbated when dealing with ordinal data. An efficient computational approach is introduced, based on a pairwise fitting technique within a pseudo-likelihood framework. This methodology is applied to clinical case studies, specifically using a trivariate probit model. Additionally, the correlation structure among outcomes is allowed to depend on covariates, enhancing both the flexibility and interpretability of the model. By way of simulation and real data applications, the proposed approach demonstrates superior computational efficiency as the dimension of the outcome vector increases. The method's ability to capture covariate-dependent correlations makes it particularly useful in medical research, where understanding complex associations among health outcomes is of scientific importance.

Suggested Citation

  • Delporte, Margaux & Verbeke, Geert & Fieuws, Steffen & Molenberghs, Geert, 2025. "Accelerating computation: A pairwise fitting technique for multivariate probit models," Computational Statistics & Data Analysis, Elsevier, vol. 203(C).
  • Handle: RePEc:eee:csdana:v:203:y:2025:i:c:s016794732400166x
    DOI: 10.1016/j.csda.2024.108082
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S016794732400166X
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2024.108082?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Steffen Fieuws & Geert Verbeke, 2006. "Pairwise Fitting of Mixed Models for the Joint Modeling of Multivariate Longitudinal Profiles," Biometrics, The International Biometric Society, vol. 62(2), pages 424-431, June.
    2. Steffen Fieuws & Geert Verbeke & Filip Boen & Christophe Delecluse, 2006. "High dimensional multivariate mixed models for binary questionnaire data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 55(4), pages 449-460, August.
    3. Morimune, Kimio, 1979. "Comparisons of Normal and Logistic Models in the Bivariate Dichotomous Analysis," Econometrica, Econometric Society, vol. 47(4), pages 957-975, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jeonghye Choi & David R. Bell & Leonard M. Lodish, 2012. "Traditional and IS-Enabled Customer Acquisition on the Internet," Management Science, INFORMS, vol. 58(4), pages 754-769, April.
    2. Alexander Robitzsch, 2024. "A Comparison of Limited Information Estimation Methods for the Two-Parameter Normal-Ogive Model with Locally Dependent Items," Stats, MDPI, vol. 7(3), pages 1-16, June.
    3. Margaux Delporte & Steffen Fieuws & Geert Molenberghs & Geert Verbeke & Simeon Situma Wanyama & Elpis Hatziagorou & Christiane De Boeck, 2022. "A joint normal‐binary (probit) model," International Statistical Review, International Statistical Institute, vol. 90(S1), pages 37-51, December.
    4. Anna Ivanova & Geert Molenberghs & Geert Verbeke, 2017. "Mechanism for missing data incorporated in joint modelling of ordinal responses," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(5), pages 1049-1064, November.
    5. Cristiano Varin, 2008. "On composite marginal likelihoods," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 92(1), pages 1-28, February.
    6. Molenberghs, Geert & Verbeke, Geert & Iddi, Samuel, 2011. "Pseudo-likelihood methodology for partitioned large and complex samples," Statistics & Probability Letters, Elsevier, vol. 81(7), pages 892-901, July.
    7. Celine Marielle Laffont & Marc Vandemeulebroecke & Didier Concordet, 2014. "Multivariate Analysis of Longitudinal Ordinal Data With Mixed Effects Models, With Application to Clinical Outcomes in Osteoarthritis," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(507), pages 955-966, September.
    8. Chuan Hong & Yang Ning & Peng Wei & Ying Cao & Yong Chen, 2017. "A semiparametric model for vQTL mapping," Biometrics, The International Biometric Society, vol. 73(2), pages 571-581, June.
    9. Kodila-Tedika, Oasis & Khalifa, Sherif, 2022. "State History and State Fragility in Sub-Saharan Africa," Journal of Economic Development, The Economic Research Institute, Chung-Ang University, vol. 47(4), pages 39-53, December.
    10. McAleer, Michael, 1995. "The significance of testing empirical non-nested models," Journal of Econometrics, Elsevier, vol. 67(1), pages 149-171, May.
    11. Christopher H. Morrell & Larry J. Brant & Shan Sheng & E. Jeffrey Metter, 2012. "Screening for prostate cancer using multivariate mixed-effects models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(6), pages 1151-1175, November.
    12. Padayachee Trishanta & Khamiakova Tatsiana & Shkedy Ziv & Salo Perttu & Perola Markus & Burzykowski Tomasz, 2019. "A multivariate linear model for investigating the association between gene-module co-expression and a continuous covariate," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 18(2), pages 1-13, April.
    13. Monfardini, Chiara, 2003. "An illustration of Cox's non-nested testing procedure for logit and probit models," Computational Statistics & Data Analysis, Elsevier, vol. 42(3), pages 425-444, March.
    14. Karl, Andrew T. & Yang, Yan & Lohr, Sharon L., 2014. "Computation of maximum likelihood estimates for multiresponse generalized linear mixed models with non-nested, correlated random effects," Computational Statistics & Data Analysis, Elsevier, vol. 73(C), pages 146-162.
    15. Chiara Brombin & Luigi Salmaso & Lara Fontanella & Luigi Ippoliti, 2015. "Nonparametric combination-based tests in dynamic shape analysis," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 27(4), pages 460-484, December.
    16. Mahdiyeh, Zahra & Kazemi, Iraj, 2019. "An innovative strategy on the construction of multivariate multimodal linear mixed-effects models," Journal of Multivariate Analysis, Elsevier, vol. 174(C).
    17. Øystein Sørensen & Anders M. Fjell & Kristine B. Walhovd, 2023. "Longitudinal Modeling of Age-Dependent Latent Traits with Generalized Additive Latent and Mixed Models," Psychometrika, Springer;The Psychometric Society, vol. 88(2), pages 456-486, June.
    18. Thierry PENARD & Nicolas POUSSING & Gabriel ZOMO YEBE & Philémon NSI ELLA, 2012. "Comparing the Determinants of Internet and Cell Phone Use in Africa: Evidence from Gabon," Communications & Strategies, IDATE, Com&Strat dept., vol. 1(86), pages 65-83, 2nd quart.
    19. Luz María Ferrada & Pilar Zarzosa, 2010. "Diferencias Regionales en la Participación Laboral Femenina en Chile," Latin American Journal of Economics-formerly Cuadernos de Economía, Instituto de Economía. Pontificia Universidad Católica de Chile., vol. 47(136), pages 249-272.
    20. Kodila-Tedika, Oasis & Khalifa, Sherif, 2019. "State History and State Fragility: Evidence from Sub-Saharan Africa," MPRA Paper 97871, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:203:y:2025:i:c:s016794732400166x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.