IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v203y2025ics0167947324001567.html
   My bibliography  Save this article

Bayesian grouping-Gibbs sampling estimation of high-dimensional linear model with non-sparsity

Author

Listed:
  • Qin, Shanshan
  • Zhang, Guanlin
  • Wu, Yuehua
  • Zhu, Zhongyi

Abstract

In high-dimensional linear regression models, common assumptions typically entail sparsity of regression coefficients β∈Rp. However, these assumptions may not hold when the majority, if not all, of regression coefficients are non-zeros. Statistical methods designed for sparse models may lead to substantial bias in model estimation. Therefore, this article proposes a novel Bayesian Grouping-Gibbs Sampling (BGGS) method, which departs from the common sparse assumptions in high-dimensional problems. The BGGS method leverages a grouping strategy that partitions β into distinct groups, facilitating rapid sampling in high-dimensional space. The grouping number (k) can be determined using the ‘Elbow plot’, which operates efficiently and is robust against the initial value. Theoretical analysis, under some regular conditions, guarantees model selection and parameter estimation consistency, and bound for the prediction error. Furthermore, three finite simulations are conducted to assess the competitive advantages of the proposed method in terms of parameter estimation and prediction accuracy. Finally, the BGGS method is applied to a financial dataset to explore its practical utility.

Suggested Citation

  • Qin, Shanshan & Zhang, Guanlin & Wu, Yuehua & Zhu, Zhongyi, 2025. "Bayesian grouping-Gibbs sampling estimation of high-dimensional linear model with non-sparsity," Computational Statistics & Data Analysis, Elsevier, vol. 203(C).
  • Handle: RePEc:eee:csdana:v:203:y:2025:i:c:s0167947324001567
    DOI: 10.1016/j.csda.2024.108072
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947324001567
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2024.108072?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zou, Hui, 2006. "The Adaptive Lasso and Its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1418-1429, December.
    2. Wang, Jia & Cai, Xizhen & Li, Runze, 2021. "Variable selection for partially linear models via Bayesian subset modeling with diffusing prior," Journal of Multivariate Analysis, Elsevier, vol. 183(C).
    3. Valen E. Johnson & David Rossell, 2012. "Bayesian Model Selection in High-Dimensional Settings," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(498), pages 649-660, June.
    4. Sylvia. Richardson & Peter J. Green, 1997. "On Bayesian Analysis of Mixtures with an Unknown Number of Components (with discussion)," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 59(4), pages 731-792.
    5. Howard D. Bondell & Brian J. Reich, 2012. "Consistent High-Dimensional Bayesian Variable Selection via Penalized Credible Regions," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(500), pages 1610-1624, December.
    6. Naveen N. Narisetty & Juan Shen & Xuming He, 2019. "Skinny Gibbs: A Consistent and Scalable Gibbs Sampler for Model Selection," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(527), pages 1205-1217, July.
    7. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    8. Yunzhang Zhu & Xiaotong Shen & Wei Pan, 2013. "Simultaneous Grouping Pursuit and Feature Selection Over an Undirected Graph," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(502), pages 713-725, June.
    9. Ishwaran, Hemant & Rao, J. Sunil, 2005. "Spike and Slab Gene Selection for Multigroup Microarray Data," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 764-780, September.
    10. Robert Tibshirani & Michael Saunders & Saharon Rosset & Ji Zhu & Keith Knight, 2005. "Sparsity and smoothness via the fused lasso," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(1), pages 91-108, February.
    11. Ding, Hao & Qin, Shanshan & Wu, Yuehua & Wu, Yaohua, 2021. "Asymptotic properties on high-dimensional multivariate regression M-estimation," Journal of Multivariate Analysis, Elsevier, vol. 183(C).
    12. Xiaotong Shen & Hsin-Cheng Huang & Wei Pan, 2012. "Simultaneous supervised clustering and feature selection over a graph," Biometrika, Biometrika Trust, vol. 99(4), pages 899-914.
    13. Liang, Feng & Paulo, Rui & Molina, German & Clyde, Merlise A. & Berger, Jim O., 2008. "Mixtures of g Priors for Bayesian Variable Selection," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 410-423, March.
    14. Jieyi Yi & Niansheng Tang, 2022. "Variational Bayesian Inference in High-Dimensional Linear Mixed Models," Mathematics, MDPI, vol. 10(3), pages 1-19, January.
    15. Li, Fan & Zhang, Nancy R., 2010. "Bayesian Variable Selection in Structured High-Dimensional Covariate Spaces With Applications in Genomics," Journal of the American Statistical Association, American Statistical Association, vol. 105(491), pages 1202-1214.
    16. Ming Yuan & Yi Lin, 2006. "Model selection and estimation in regression with grouped variables," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(1), pages 49-67, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jeon, Jong-June & Kwon, Sunghoon & Choi, Hosik, 2017. "Homogeneity detection for the high-dimensional generalized linear model," Computational Statistics & Data Analysis, Elsevier, vol. 114(C), pages 61-74.
    2. Shanshan Qin & Hao Ding & Yuehua Wu & Feng Liu, 2021. "High-dimensional sign-constrained feature selection and grouping," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(4), pages 787-819, August.
    3. Yen-Shiu Chin & Ting-Li Chen, 2016. "Minimizing variable selection criteria by Markov chain Monte Carlo," Computational Statistics, Springer, vol. 31(4), pages 1263-1286, December.
    4. Howard D. Bondell & Brian J. Reich, 2012. "Consistent High-Dimensional Bayesian Variable Selection via Penalized Credible Regions," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(500), pages 1610-1624, December.
    5. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    6. Byron Botha & Rulof Burger & Kevin Kotzé & Neil Rankin & Daan Steenkamp, 2023. "Big data forecasting of South African inflation," Empirical Economics, Springer, vol. 65(1), pages 149-188, July.
    7. Yize Zhao & Matthias Chung & Brent A. Johnson & Carlos S. Moreno & Qi Long, 2016. "Hierarchical Feature Selection Incorporating Known and Novel Biological Information: Identifying Genomic Features Related to Prostate Cancer Recurrence," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1427-1439, October.
    8. Bernardi, Mauro & Costola, Michele, 2019. "High-dimensional sparse financial networks through a regularised regression model," SAFE Working Paper Series 244, Leibniz Institute for Financial Research SAFE.
    9. Loann David Denis Desboulets, 2018. "A Review on Variable Selection in Regression Analysis," Econometrics, MDPI, vol. 6(4), pages 1-27, November.
    10. Takumi Saegusa & Tianzhou Ma & Gang Li & Ying Qing Chen & Mei-Ling Ting Lee, 2020. "Variable Selection in Threshold Regression Model with Applications to HIV Drug Adherence Data," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 12(3), pages 376-398, December.
    11. Korobilis, Dimitris, 2013. "Hierarchical shrinkage priors for dynamic regressions with many predictors," International Journal of Forecasting, Elsevier, vol. 29(1), pages 43-59.
    12. Huicong Yu & Jiaqi Wu & Weiping Zhang, 2024. "Simultaneous subgroup identification and variable selection for high dimensional data," Computational Statistics, Springer, vol. 39(6), pages 3181-3205, September.
    13. Wu, Xiaofei & Liang, Rongmei & Zhang, Zhimin & Cui, Zhenyu, 2025. "A unified consensus-based parallel algorithm for high-dimensional regression with combined regularizations," Computational Statistics & Data Analysis, Elsevier, vol. 203(C).
    14. Massimiliano Caporin & Francesco Poli, 2017. "Building News Measures from Textual Data and an Application to Volatility Forecasting," Econometrics, MDPI, vol. 5(3), pages 1-46, August.
    15. Pei Wang & Shunjie Chen & Sijia Yang, 2022. "Recent Advances on Penalized Regression Models for Biological Data," Mathematics, MDPI, vol. 10(19), pages 1-24, October.
    16. Justin B. Post & Howard D. Bondell, 2013. "Factor Selection and Structural Identification in the Interaction ANOVA Model," Biometrics, The International Biometric Society, vol. 69(1), pages 70-79, March.
    17. Jiang, Liewen & Bondell, Howard D. & Wang, Huixia Judy, 2014. "Interquantile shrinkage and variable selection in quantile regression," Computational Statistics & Data Analysis, Elsevier, vol. 69(C), pages 208-219.
    18. Degui Li & Junhui Qian & Liangjun Su, 2016. "Panel Data Models With Interactive Fixed Effects and Multiple Structural Breaks," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1804-1819, October.
    19. Bang, Sungwan & Jhun, Myoungshic, 2012. "Simultaneous estimation and factor selection in quantile regression via adaptive sup-norm regularization," Computational Statistics & Data Analysis, Elsevier, vol. 56(4), pages 813-826.
    20. Kwon, Sunghoon & Oh, Seungyoung & Lee, Youngjo, 2016. "The use of random-effect models for high-dimensional variable selection problems," Computational Statistics & Data Analysis, Elsevier, vol. 103(C), pages 401-412.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:203:y:2025:i:c:s0167947324001567. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.