IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i3p463-d739214.html
   My bibliography  Save this article

Variational Bayesian Inference in High-Dimensional Linear Mixed Models

Author

Listed:
  • Jieyi Yi

    (Yunnan Key Laboratory of Statistical Modeling and Data Analysis, Yunnan University, Kunming 650091, China)

  • Niansheng Tang

    (Yunnan Key Laboratory of Statistical Modeling and Data Analysis, Yunnan University, Kunming 650091, China)

Abstract

In high-dimensional regression models, the Bayesian lasso with the Gaussian spike and slab priors is widely adopted to select variables and estimate unknown parameters. However, it involves large matrix computations in a standard Gibbs sampler. To solve this issue, the Skinny Gibbs sampler is employed to draw observations required for Bayesian variable selection. However, when the sample size is much smaller than the number of variables, the computation is rather time-consuming. As an alternative to the Skinny Gibbs sampler, we develop a variational Bayesian approach to simultaneously select variables and estimate parameters in high-dimensional linear mixed models under the Gaussian spike and slab priors of population-specific fixed-effects regression coefficients, which are reformulated as a mixture of a normal distribution and an exponential distribution. The coordinate ascent algorithm, which can be implemented efficiently, is proposed to optimize the evidence lower bound. The Bayes factor, which can be computed with the path sampling technique, is presented to compare two competing models in the variational Bayesian framework. Simulation studies are conducted to assess the performance of the proposed variational Bayesian method. An empirical example is analyzed by the proposed methodologies.

Suggested Citation

  • Jieyi Yi & Niansheng Tang, 2022. "Variational Bayesian Inference in High-Dimensional Linear Mixed Models," Mathematics, MDPI, vol. 10(3), pages 1-19, January.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:3:p:463-:d:739214
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/3/463/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/3/463/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Joseph G. Ibrahim & Hongtu Zhu & Ramon I. Garcia & Ruixin Guo, 2011. "Fixed and Random Effects Selection in Mixed Effects Models," Biometrics, The International Biometric Society, vol. 67(2), pages 495-503, June.
    2. Zhen Chen & David B. Dunson, 2003. "Random Effects Selection in Linear Mixed Models," Biometrics, The International Biometric Society, vol. 59(4), pages 762-769, December.
    3. Howard D. Bondell & Arun Krishna & Sujit K. Ghosh, 2010. "Joint Variable Selection for Fixed and Random Effects in Linear Mixed-Effects Models," Biometrics, The International Biometric Society, vol. 66(4), pages 1069-1077, December.
    4. Jürg Schelldorfer & Peter Bühlmann & Sara Van De Geer, 2011. "Estimation for High‐Dimensional Linear Mixed‐Effects Models Using ℓ 1 ‐Penalization," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 38(2), pages 197-214, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bogdan Mocan & Claudiu Schonstein & Mircea Murar & Calin Neamtu & Mircea Fulea & Mihaela Mocan & Simona Dragan & Horea Feier, 2023. "Upper-Limb Robotic Exoskeleton for Early Cardiac Rehabilitation Following an Open-Heart Surgery—Mathematical Modelling and Empirical Validation," Mathematics, MDPI, vol. 11(7), pages 1-43, March.
    2. Dengluan Dai & Anmin Tang & Jinli Ye, 2023. "High-Dimensional Variable Selection for Quantile Regression Based on Variational Bayesian Method," Mathematics, MDPI, vol. 11(10), pages 1-22, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Simona Buscemi & Antonella Plaia, 2020. "Model selection in linear mixed-effect models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 104(4), pages 529-575, December.
    2. Mojtaba Ganjali & Taban Baghfalaki, 2018. "Application of Penalized Mixed Model in Identification of Genes in Yeast Cell-Cycle Gene Expression Data," Biostatistics and Biometrics Open Access Journal, Juniper Publishers Inc., vol. 6(2), pages 38-41, April.
    3. Daniel R. Kowal, 2023. "Subset selection for linear mixed models," Biometrics, The International Biometric Society, vol. 79(3), pages 1853-1867, September.
    4. Abhik Ghosh & Magne Thoresen, 2018. "Non-concave penalization in linear mixed-effect models and regularized selection of fixed effects," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 102(2), pages 179-210, April.
    5. Ping Wu & Xinchao Luo & Peirong Xu & Lixing Zhu, 2017. "New variable selection for linear mixed-effects models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(3), pages 627-646, June.
    6. Kramlinger, Peter & Schneider, Ulrike & Krivobokova, Tatyana, 2023. "Uniformly valid inference based on the Lasso in linear mixed models," Journal of Multivariate Analysis, Elsevier, vol. 198(C).
    7. Joseph G. Ibrahim & Hongtu Zhu & Ramon I. Garcia & Ruixin Guo, 2011. "Fixed and Random Effects Selection in Mixed Effects Models," Biometrics, The International Biometric Society, vol. 67(2), pages 495-503, June.
    8. Shakhawat Hossain & Trevor Thomson & Ejaz Ahmed, 2018. "Shrinkage estimation in linear mixed models for longitudinal data," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(5), pages 569-586, July.
    9. Mingan Yang & Min Wang & Guanghui Dong, 2020. "Bayesian variable selection for mixed effects model with shrinkage prior," Computational Statistics, Springer, vol. 35(1), pages 227-243, March.
    10. Yang, Mingan, 2012. "Bayesian variable selection for logistic mixed model with nonparametric random effects," Computational Statistics & Data Analysis, Elsevier, vol. 56(9), pages 2663-2674.
    11. Zangdong He & Wanzhu Tu & Sijian Wang & Haoda Fu & Zhangsheng Yu, 2015. "Simultaneous variable selection for joint models of longitudinal and survival outcomes," Biometrics, The International Biometric Society, vol. 71(1), pages 178-187, March.
    12. Mammen, Enno & Wilke, Ralf A. & Zapp, Kristina Maria, 2022. "Estimation of group structures in panel models with individual fixed effects," ZEW Discussion Papers 22-023, ZEW - Leibniz Centre for European Economic Research.
    13. Jiehuan Sun & Jose D. Herazo‐Maya & Philip L. Molyneaux & Toby M. Maher & Naftali Kaminski & Hongyu Zhao, 2019. "Regularized Latent Class Model for Joint Analysis of High‐Dimensional Longitudinal Biomarkers and a Time‐to‐Event Outcome," Biometrics, The International Biometric Society, vol. 75(1), pages 69-77, March.
    14. Jan Pablo Burgard & Joscha Krause & Ralf Münnich, 2019. "Penalized Small Area Models for the Combination of Unit- and Area-level Data," Research Papers in Economics 2019-05, University of Trier, Department of Economics.
    15. Rohart, Florian & San Cristobal, Magali & Laurent, Béatrice, 2014. "Selection of fixed effects in high dimensional linear mixed models using a multicycle ECM algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 80(C), pages 209-222.
    16. Ollier, Edouard, 2022. "Fast selection of nonlinear mixed effect models using penalized likelihood," Computational Statistics & Data Analysis, Elsevier, vol. 167(C).
    17. Hang Lai & Xin Gao, 2023. "Modified BIC Criterion for Model Selection in Linear Mixed Models," Mathematics, MDPI, vol. 11(9), pages 1-26, May.
    18. Imori, Shinpei & Rosen, Dietrich von, 2015. "Covariance components selection in high-dimensional growth curve model with random coefficients," Journal of Multivariate Analysis, Elsevier, vol. 136(C), pages 86-94.
    19. Tsai-Hung Fan & Yi-Fu Wang & Yi-Chen Zhang, 2014. "Bayesian model selection in linear mixed effects models with autoregressive(p) errors using mixture priors," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(8), pages 1814-1829, August.
    20. Kin Yau Wong & Yair Goldberg & Jason P. Fine, 2016. "Oracle estimation of parametric models under boundary constraints," Biometrics, The International Biometric Society, vol. 72(4), pages 1173-1183, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:3:p:463-:d:739214. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.