IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v135y2019icp25-34.html
   My bibliography  Save this article

Variable selection via the composite likelihood method for multilevel longitudinal data with missing responses and covariates

Author

Listed:
  • Li, Haocheng
  • Shu, Di
  • He, Wenqing
  • Yi, Grace Y.

Abstract

Longitudinal data with multilevel structures are commonly collected when following up subjects in clusters over a period of time. Missing values and variable selection issues are common for such data. Biased results may be produced if incompleteness of data is ignored in the analysis. On the other hand, incorporating a large number of irrelevant covariates into inferential procedures may lead to difficulty in computation and interpretation. A unified penalized composite likelihood framework is developed to handle data with missingness and variable selection issues. It is flexible to handle the situation where responses and covariates are missing not simultaneously under the assumption of missing not at random. The method is justified both rigorously with theoretical results and numerically with simulation studies. The method is also applied to the Waterloo Smoking Prevention Project data.

Suggested Citation

  • Li, Haocheng & Shu, Di & He, Wenqing & Yi, Grace Y., 2019. "Variable selection via the composite likelihood method for multilevel longitudinal data with missing responses and covariates," Computational Statistics & Data Analysis, Elsevier, vol. 135(C), pages 25-34.
  • Handle: RePEc:eee:csdana:v:135:y:2019:i:c:p:25-34
    DOI: 10.1016/j.csda.2019.01.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947319300258
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2019.01.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zou, Hui, 2006. "The Adaptive Lasso and Its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1418-1429, December.
    2. P. Diggle & M. G. Kenward, 1994. "Informative Drop‐Out in Longitudinal Data Analysis," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 43(1), pages 49-73, March.
    3. Xiao Ni & Daowen Zhang & Hao Helen Zhang, 2010. "Variable Selection for Semiparametric Mixed Models in Longitudinal Studies," Biometrics, The International Biometric Society, vol. 66(1), pages 79-88, March.
    4. Jianqing Fan & Runze Li, 2004. "New Estimation and Model Selection Procedures for Semiparametric Modeling in Longitudinal Data Analysis," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 710-723, January.
    5. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    6. Amy L. Stubbendick & Joseph G. Ibrahim, 2003. "Maximum Likelihood Methods for Nonignorable Missing Responses and Covariates in Random Effects Models," Biometrics, The International Biometric Society, vol. 59(4), pages 1140-1150, December.
    7. Harvey Goldstein & James R. Carpenter & William J. Browne, 2014. "Fitting multilevel multivariate models with missing data in responses and covariates that may include interactions and non-linear terms," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 177(2), pages 553-564, February.
    8. Cameron, R. & Brown, K.S. & Best, J.A. & Pelkman, C.L. & Madill, C.L. & Manske, S.R. & Payne, M.E., 1999. "Effectiveness of a social influences smoking prevention program as a function of provider type, training method, and school risk," American Journal of Public Health, American Public Health Association, vol. 89(12), pages 1827-1831.
    9. Garrett M. Fitzmaurice & Stuart R. Lipsitz & Geert Molenberghs & Joseph G. Ibrahim, 2005. "A protective estimator for longitudinal binary data subject to non‐ignorable non‐monotone missingness," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 168(4), pages 723-735, November.
    10. Howard D. Bondell & Arun Krishna & Sujit K. Ghosh, 2010. "Joint Variable Selection for Fixed and Random Effects in Linear Mixed-Effects Models," Biometrics, The International Biometric Society, vol. 66(4), pages 1069-1077, December.
    11. Choi, Nam Hee & Li, William & Zhu, Ji, 2010. "Variable Selection With the Strong Heredity Constraint and Its Oracle Property," Journal of the American Statistical Association, American Statistical Association, vol. 105(489), pages 354-364.
    12. Gao, Xin & Song, Peter X.-K., 2010. "Composite Likelihood Bayesian Information Criteria for Model Selection in High-Dimensional Data," Journal of the American Statistical Association, American Statistical Association, vol. 105(492), pages 1531-1540.
    13. Li, Haocheng & Shu, Di & Zhang, Yukun & Yi, Grace Y., 2018. "Simultaneous variable selection and estimation for multivariate multilevel longitudinal data with both continuous and binary responses," Computational Statistics & Data Analysis, Elsevier, vol. 118(C), pages 126-137.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Joseph G. Ibrahim & Hongtu Zhu & Ramon I. Garcia & Ruixin Guo, 2011. "Fixed and Random Effects Selection in Mixed Effects Models," Biometrics, The International Biometric Society, vol. 67(2), pages 495-503, June.
    2. Zangdong He & Wanzhu Tu & Sijian Wang & Haoda Fu & Zhangsheng Yu, 2015. "Simultaneous variable selection for joint models of longitudinal and survival outcomes," Biometrics, The International Biometric Society, vol. 71(1), pages 178-187, March.
    3. Yawei He & Zehua Chen, 2016. "The EBIC and a sequential procedure for feature selection in interactive linear models with high-dimensional data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 68(1), pages 155-180, February.
    4. Ni, Xiao & Zhang, Hao Helen & Zhang, Daowen, 2009. "Automatic model selection for partially linear models," Journal of Multivariate Analysis, Elsevier, vol. 100(9), pages 2100-2111, October.
    5. Peng, Heng & Lu, Ying, 2012. "Model selection in linear mixed effect models," Journal of Multivariate Analysis, Elsevier, vol. 109(C), pages 109-129.
    6. Ping Wu & Xinchao Luo & Peirong Xu & Lixing Zhu, 2017. "New variable selection for linear mixed-effects models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(3), pages 627-646, June.
    7. Shan Luo & Zehua Chen, 2014. "Sequential Lasso Cum EBIC for Feature Selection With Ultra-High Dimensional Feature Space," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(507), pages 1229-1240, September.
    8. Lai, Peng & Wang, Qihua & Lian, Heng, 2012. "Bias-corrected GEE estimation and smooth-threshold GEE variable selection for single-index models with clustered data," Journal of Multivariate Analysis, Elsevier, vol. 105(1), pages 422-432.
    9. Loann David Denis Desboulets, 2018. "A Review on Variable Selection in Regression Analysis," Econometrics, MDPI, vol. 6(4), pages 1-27, November.
    10. Zeyu Bian & Erica E. M. Moodie & Susan M. Shortreed & Sahir Bhatnagar, 2023. "Variable selection in regression‐based estimation of dynamic treatment regimes," Biometrics, The International Biometric Society, vol. 79(2), pages 988-999, June.
    11. Jingyuan Liu & Runze Li & Rongling Wu, 2014. "Feature Selection for Varying Coefficient Models With Ultrahigh-Dimensional Covariates," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(505), pages 266-274, March.
    12. Simona Buscemi & Antonella Plaia, 2020. "Model selection in linear mixed-effect models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 104(4), pages 529-575, December.
    13. Guang Cheng & Hao Zhang & Zuofeng Shang, 2015. "Sparse and efficient estimation for partial spline models with increasing dimension," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(1), pages 93-127, February.
    14. Zhangong Zhou & Rong Jiang & Weimin Qian, 2013. "LAD variable selection for linear models with randomly censored data," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 76(2), pages 287-300, February.
    15. Mojtaba Ganjali & Taban Baghfalaki, 2018. "Application of Penalized Mixed Model in Identification of Genes in Yeast Cell-Cycle Gene Expression Data," Biostatistics and Biometrics Open Access Journal, Juniper Publishers Inc., vol. 6(2), pages 38-41, April.
    16. Justin B. Post & Howard D. Bondell, 2013. "Factor Selection and Structural Identification in the Interaction ANOVA Model," Biometrics, The International Biometric Society, vol. 69(1), pages 70-79, March.
    17. Xingwei Tong & Xin He & Liuquan Sun & Jianguo Sun, 2009. "Variable Selection for Panel Count Data via Non‐Concave Penalized Estimating Function," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(4), pages 620-635, December.
    18. Li Yun & O’Connor George T. & Dupuis Josée & Kolaczyk Eric, 2015. "Modeling gene-covariate interactions in sparse regression with group structure for genome-wide association studies," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 14(3), pages 265-277, June.
    19. Cui, Wenquan & Cheng, Haoyang & Sun, Jiajing, 2018. "An RKHS-based approach to double-penalized regression in high-dimensional partially linear models," Journal of Multivariate Analysis, Elsevier, vol. 168(C), pages 201-210.
    20. Luoying Yang & Tong Tong Wu, 2023. "Model‐based clustering of high‐dimensional longitudinal data via regularization," Biometrics, The International Biometric Society, vol. 79(2), pages 761-774, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:135:y:2019:i:c:p:25-34. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.