IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v86y2016icp23-27.html
   My bibliography  Save this article

A closed form solution for vulnerable options with Heston’s stochastic volatility

Author

Listed:
  • Lee, Min-Ku
  • Yang, Sung-Jin
  • Kim, Jeong-Hoon

Abstract

Over-the-counter stock markets in the world have been growing rapidly and vulnerability to default risks of option holders traded in the over-the-counter markets became an important issue, in particular, since the global finance crisis and Eurozone crisis. This paper studies the pricing of European-type vulnerable options when the underlying asset follows the Heston dynamics. In this paper, we obtain a closed form analytic formula of the option price as a stochastic volatility extension of the classical Heston formula and find how the stochastic volatility effect on the Black–Scholes price as well as on the decreasing speed of the option price with credit risk depends on moneyness.

Suggested Citation

  • Lee, Min-Ku & Yang, Sung-Jin & Kim, Jeong-Hoon, 2016. "A closed form solution for vulnerable options with Heston’s stochastic volatility," Chaos, Solitons & Fractals, Elsevier, vol. 86(C), pages 23-27.
  • Handle: RePEc:eee:chsofr:v:86:y:2016:i:c:p:23-27
    DOI: 10.1016/j.chaos.2016.01.026
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077916300170
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2016.01.026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jackwerth, Jens Carsten & Rubinstein, Mark, 1996. "Recovering Probability Distributions from Option Prices," Journal of Finance, American Finance Association, vol. 51(5), pages 1611-1632, December.
    2. Johnson, Herb & Stulz, Rene, 1987. "The Pricing of Options with Default Risk," Journal of Finance, American Finance Association, vol. 42(2), pages 267-280, June.
    3. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    4. Klein, Peter, 1996. "Pricing Black-Scholes options with correlated credit risk," Journal of Banking & Finance, Elsevier, vol. 20(7), pages 1211-1229, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Xingchun, 2021. "Valuation of options on the maximum of two prices with default risk under GARCH models," The North American Journal of Economics and Finance, Elsevier, vol. 57(C).
    2. Wang, Guanying & Wang, Xingchun & Zhou, Ke, 2017. "Pricing vulnerable options with stochastic volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 485(C), pages 91-103.
    3. Chaoqun Ma & Shengjie Yue & Hui Wu & Yong Ma, 2020. "Pricing Vulnerable Options with Stochastic Volatility and Stochastic Interest Rate," Computational Economics, Springer;Society for Computational Economics, vol. 56(2), pages 391-429, August.
    4. Xingchun Wang, 2021. "Pricing vulnerable options with jump risk and liquidity risk," Review of Derivatives Research, Springer, vol. 24(3), pages 243-260, October.
    5. Xie, Yurong & Deng, Guohe, 2022. "Vulnerable European option pricing in a Markov regime-switching Heston model with stochastic interest rate," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    6. Gechun Liang & Xingchun Wang, 2021. "Pricing vulnerable options in a hybrid credit risk model driven by Heston–Nandi GARCH processes," Review of Derivatives Research, Springer, vol. 24(1), pages 1-30, April.
    7. E. Alòs & F. Antonelli & A. Ramponi & S. Scarlatti, 2021. "Cva And Vulnerable Options In Stochastic Volatility Models," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 24(02), pages 1-34, March.
    8. Jeon, Junkee & Kim, Geonwoo, 2019. "Pricing of vulnerable options with early counterparty credit risk," The North American Journal of Economics and Finance, Elsevier, vol. 47(C), pages 645-656.
    9. Han, Xingyu, 2018. "Pricing and hedging vulnerable option with funding costs and collateral," Chaos, Solitons & Fractals, Elsevier, vol. 112(C), pages 103-115.
    10. Lee, Min-Ku & Kim, Jeong-Hoon, 2018. "Pricing of defaultable options with multiscale generalized Heston’s stochastic volatility," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 144(C), pages 235-246.
    11. Wang, Libin & Liu, Lixia, 2025. "Some bivariate options pricing in a regime-switching stochastic volatility jump-diffusion model with stochastic intensity, stochastic interest and dependent jump," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 229(C), pages 468-490.
    12. Kim, See-Woo & Kim, Jeong-Hoon, 2018. "Analytic solutions for variance swaps with double-mean-reverting volatility," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 130-144.
    13. Xingchun Wang, 2020. "Analytical valuation of Asian options with counterparty risk under stochastic volatility models," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 40(3), pages 410-429, March.
    14. Tendayi Matina & Edmore Mangwende, 2024. "The Effect of the Hurst Parameter on Value at Risk Estimation in Fractional Geometric Brownian motion Price Simulation," International Journal of Research and Innovation in Social Science, International Journal of Research and Innovation in Social Science (IJRISS), vol. 8(12), pages 1849-1857, December.
    15. Huang, Shoude & Guo, Xunxiang, 2022. "Valuation of European-style vulnerable options under the non-affine stochastic volatility and double exponential jump," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    16. Koo, Eunho & Kim, Geonwoo, 2017. "Explicit formula for the valuation of catastrophe put option with exponential jump and default risk," Chaos, Solitons & Fractals, Elsevier, vol. 101(C), pages 1-7.
    17. Xiangdong Liu & Zanbin Zhang, 2023. "Pricing European Vulnerable Options with Jumps and Stochastic Default Obstacles Barrier under Regime Switching," Mathematics, MDPI, vol. 11(19), pages 1-18, October.
    18. Zaevski, Tsvetelin S. & Kounchev, Ognyan & Savov, Mladen, 2019. "Two frameworks for pricing defaultable derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 309-319.
    19. Geonwoo Kim, 2020. "Valuation of Exchange Option with Credit Risk in a Hybrid Model," Mathematics, MDPI, vol. 8(11), pages 1-11, November.
    20. He, Xin-Jiang & Pasricha, Puneet & Lu, Tuantuan & Lin, Sha, 2024. "Vulnerable options with regime switching and stochastic liquidity," The Quarterly Review of Economics and Finance, Elsevier, vol. 98(C).
    21. Panhong Cheng & Zhihong Xu & Zexing Dai, 2023. "Valuation of vulnerable options with stochastic corporate liabilities in a mixed fractional Brownian motion environment," Mathematics and Financial Economics, Springer, volume 17, number 3, September.
    22. Dingding Dong & Xinyue Ou & Xingchun Wang, 2025. "Valuation of vulnerable options using a bivariate Gram–Charlier approximation," Review of Derivatives Research, Springer, vol. 28(1), pages 1-30, April.
    23. Kim, Geonwoo & Koo, Eunho, 2016. "Closed-form pricing formula for exchange option with credit risk," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 221-227.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Xin-Jiang & Pasricha, Puneet & Lu, Tuantuan & Lin, Sha, 2024. "Vulnerable options with regime switching and stochastic liquidity," The Quarterly Review of Economics and Finance, Elsevier, vol. 98(C).
    2. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    3. Sun-Yong Choi & Sotheara Veng & Jeong-Hoon Kim & Ji-Hun Yoon, 2022. "A Mellin Transform Approach to the Pricing of Options with Default Risk," Computational Economics, Springer;Society for Computational Economics, vol. 59(3), pages 1113-1134, March.
    4. Lee, Min-Ku & Kim, Jeong-Hoon, 2018. "Pricing of defaultable options with multiscale generalized Heston’s stochastic volatility," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 144(C), pages 235-246.
    5. Jeon, Jaegi & Kim, Geonwoo & Huh, Jeonggyu, 2021. "An asymptotic expansion approach to the valuation of vulnerable options under a multiscale stochastic volatility model," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    6. Eric Djeutcha & Jules Sadefo Kamdem, 2024. "Pricing for a vulnerable bull spread options using a mixed modified fractional Hull–White–Vasicek model," Annals of Operations Research, Springer, vol. 334(1), pages 101-131, March.
    7. Wang, Guanying & Wang, Xingchun & Zhou, Ke, 2017. "Pricing vulnerable options with stochastic volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 485(C), pages 91-103.
    8. Huang, Shoude & Guo, Xunxiang, 2022. "Valuation of European-style vulnerable options under the non-affine stochastic volatility and double exponential jump," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    9. Donghyun Kim & Mijin Ha & Sun-Yong Choi & Ji-Hun Yoon, 2025. "Pricing of Vulnerable Timer Options," Computational Economics, Springer;Society for Computational Economics, vol. 65(2), pages 989-1014, February.
    10. Xie, Yurong & Deng, Guohe, 2022. "Vulnerable European option pricing in a Markov regime-switching Heston model with stochastic interest rate," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    11. Junkee Jeon & Geonwoo Kim, 2023. "Valuation of Commodity-Linked Bond with Stochastic Convenience Yield, Stochastic Volatility, and Credit Risk in an Intensity-Based Model," Mathematics, MDPI, vol. 11(24), pages 1-11, December.
    12. Peter Carr & Liuren Wu, 2014. "Static Hedging of Standard Options," Journal of Financial Econometrics, Oxford University Press, vol. 12(1), pages 3-46.
    13. Chang, Eric C. & Ren, Jinjuan & Shi, Qi, 2009. "Effects of the volatility smile on exchange settlement practices: The Hong Kong case," Journal of Banking & Finance, Elsevier, vol. 33(1), pages 98-112, January.
    14. Alexander David & Pietro Veronesi, 1998. "Option Prices with Uncertain Fundamentals: Theory and Evidence on the Dynamics of Implied Volatilities," CRSP working papers 485, Center for Research in Security Prices, Graduate School of Business, University of Chicago.
    15. Semih Yon & Cafer Erhan Bozdag, 2014. "Test of Log-Normal Process with Importance Sampling for Options Pricing," Proceedings of Economics and Finance Conferences 0401571, International Institute of Social and Economic Sciences.
    16. Christoffersen, Peter & Jacobs, Kris & Chang, Bo Young, 2013. "Forecasting with Option-Implied Information," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 581-656, Elsevier.
    17. A. Monteiro & R. Tütüncü & L. Vicente, 2011. "Estimation of risk-neutral density surfaces," Computational Management Science, Springer, vol. 8(4), pages 387-414, November.
    18. Seiji Harikae & James S. Dyer & Tianyang Wang, 2021. "Valuing Real Options in the Volatile Real World," Production and Operations Management, Production and Operations Management Society, vol. 30(1), pages 171-189, January.
    19. Boris Ter-Avanesov & Homayoon Beigi, 2024. "MLP, XGBoost, KAN, TDNN, and LSTM-GRU Hybrid RNN with Attention for SPX and NDX European Call Option Pricing," Papers 2409.06724, arXiv.org, revised Oct 2024.
    20. Tai‐Yong Roh & Alireza Tourani‐Rad & Yahua Xu & Yang Zhao, 2021. "Volatility‐of‐volatility risk in the crude oil market," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(2), pages 245-265, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:86:y:2016:i:c:p:23-27. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.