IDEAS home Printed from https://ideas.repec.org/a/bcp/journl/v8y2024i12p1849-1857.html
   My bibliography  Save this article

The Effect of the Hurst Parameter on Value at Risk Estimation in Fractional Geometric Brownian motion Price Simulation

Author

Listed:
  • Tendayi Matina

    (University of Zimbabwe, Mathematics and Computational Sciences Department, Harare, Zimbabwe)

  • Edmore Mangwende

    (University of Zimbabwe, Mathematics and Computational Sciences Department, Harare, Zimbabwe)

Abstract

This study assessed the impact of the Hurst parameter on the accuracy of Value at Risk (VaR) estimation using fractional Geometric Brownian motion (fGBM) for stock price simulation. The fGBM model, known for its ability to capture long-term memory in financial time series, was employed to simulate stock prices with varying Hurst parameters. The accuracy of VaR estimations obtained from these simulations was then assessed using mean absolute error metric. The research findings revealed that the Hurst parameter significantly influences the accuracy of VaR estimation in fGBM models. The study identified 0.7 as the optimal Hurst parameter value that enhances VaR estimation accuracy, highlighting the importance of incorporating long-term memory effects in risk assessment. The insights have practical implications for investors and financial institutions seeking to enhance risk management practices. The researchers recommended further researches using different levels of Hurst parameters and VaR at different significant levels.

Suggested Citation

  • Tendayi Matina & Edmore Mangwende, 2024. "The Effect of the Hurst Parameter on Value at Risk Estimation in Fractional Geometric Brownian motion Price Simulation," International Journal of Research and Innovation in Social Science, International Journal of Research and Innovation in Social Science (IJRISS), vol. 8(12), pages 1849-1857, December.
  • Handle: RePEc:bcp:journl:v:8:y:2024:i:12:p:1849-1857
    as

    Download full text from publisher

    File URL: https://www.rsisinternational.org/journals/ijriss/Digital-Library/volume-8-issue-12/1849-1857.pdf
    Download Restriction: no

    File URL: https://rsisinternational.org/journals/ijriss/articles/the-effect-of-the-hurst-parameter-on-value-at-risk-estimation-in-fractional-geometric-brownian-motion-price-simulation/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Baillie, Richard T. & Bollerslev, Tim & Mikkelsen, Hans Ole, 1996. "Fractionally integrated generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 74(1), pages 3-30, September.
    2. Lee, Min-Ku & Yang, Sung-Jin & Kim, Jeong-Hoon, 2016. "A closed form solution for vulnerable options with Heston’s stochastic volatility," Chaos, Solitons & Fractals, Elsevier, vol. 86(C), pages 23-27.
    3. Gneiting, Tilmann, 2011. "Making and Evaluating Point Forecasts," Journal of the American Statistical Association, American Statistical Association, vol. 106(494), pages 746-762.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei Kuang, 2022. "Oil tail-risk forecasts: from financial crisis to COVID-19," Risk Management, Palgrave Macmillan, vol. 24(4), pages 420-460, December.
    2. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    3. Wang, Weichen & An, Ran & Zhu, Ziwei, 2024. "Volatility prediction comparison via robust volatility proxies: An empirical deviation perspective," Journal of Econometrics, Elsevier, vol. 239(2).
    4. Nikolai Leonenko & Ludmila Sakhno, 2001. "On the Kaplan–Meier Estimator of Long-Range Dependent Sequences," Statistical Inference for Stochastic Processes, Springer, vol. 4(1), pages 17-40, January.
    5. Lahmiri, Salim & Bekiros, Stelios, 2017. "Disturbances and complexity in volatility time series," Chaos, Solitons & Fractals, Elsevier, vol. 105(C), pages 38-42.
    6. Demiralay, Sercan & Ulusoy, Veysel, 2014. "Value-at-risk Predictions of Precious Metals with Long Memory Volatility Models," MPRA Paper 53229, University Library of Munich, Germany.
    7. Angelidis, Dimitrios & Koulakiotis Athanasios & Kiohos Apostolos, 2018. "Feedback Trading Strategies: The Case of Greece and Cyprus," South East European Journal of Economics and Business, Sciendo, vol. 13(1), pages 93-99, June.
    8. Jinquan Liu & Tingguo Zheng & Jianli Sui, 2008. "Dual long memory of inflation and test of the relationship between inflation and inflation uncertainty," Psychometrika, Springer;The Psychometric Society, vol. 3(2), pages 240-254, June.
    9. Krämer, Walter & Sibbertsen, Philipp & Kleiber, Christian, 2001. "Long memory vs. structural change in financial time series," Technical Reports 2001,37, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    10. Jonathan Berrisch & Florian Ziel, 2023. "Multivariate Probabilistic CRPS Learning with an Application to Day-Ahead Electricity Prices," Papers 2303.10019, arXiv.org, revised Feb 2024.
    11. Fajardo, José & Farias, Aquiles, 2004. "Generalized Hyperbolic Distributions and Brazilian Data," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 24(2), November.
    12. Thomas Theobald, 2015. "Agent-based risk management – a regulatory approach to financial markets," Journal of Economic Studies, Emerald Group Publishing Limited, vol. 42(5), pages 780-820, October.
    13. Asai, Manabu & McAleer, Michael, 2015. "Forecasting co-volatilities via factor models with asymmetry and long memory in realized covariance," Journal of Econometrics, Elsevier, vol. 189(2), pages 251-262.
    14. Dutta, Shantanu & Essaddam, Naceur & Kumar, Vinod & Saadi, Samir, 2017. "How does electronic trading affect efficiency of stock market and conditional volatility? Evidence from Toronto Stock Exchange," Research in International Business and Finance, Elsevier, vol. 39(PB), pages 867-877.
    15. Youwei Li & Xue-Zhong He, 2005. "Long Memory, Heterogeneity, and Trend Chasing," Computing in Economics and Finance 2005 113, Society for Computational Economics.
    16. Said Khalil, 2022. "Expectile-based capital allocation," Working Papers hal-03816525, HAL.
    17. Christensen, Bent Jesper & Nielsen, Morten Ørregaard & Zhu, Jie, 2010. "Long memory in stock market volatility and the volatility-in-mean effect: The FIEGARCH-M Model," Journal of Empirical Finance, Elsevier, vol. 17(3), pages 460-470, June.
    18. Ra l De Jes s Guti rrez & Lidia E. Carvajal Guti rrez & Oswaldo Garcia Salgado, 2023. "Value at Risk and Expected Shortfall Estimation for Mexico s Isthmus Crude Oil Using Long-Memory GARCH-EVT Combined Approaches," International Journal of Energy Economics and Policy, Econjournals, vol. 13(4), pages 467-480, July.
    19. Uctum, Remzi & Renou-Maissant, Patricia & Prat, Georges & Lecarpentier-Moyal, Sylvie, 2017. "Persistence of announcement effects on the intraday volatility of stock returns: Evidence from individual data," Review of Financial Economics, Elsevier, vol. 35(C), pages 43-56.
    20. Leopoldo Catania & Stefano Grassi, 2017. "Modelling Crypto-Currencies Financial Time-Series," CEIS Research Paper 417, Tor Vergata University, CEIS, revised 11 Dec 2017.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bcp:journl:v:8:y:2024:i:12:p:1849-1857. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Dr. Pawan Verma (email available below). General contact details of provider: https://rsisinternational.org/journals/ijriss/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.