IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v40y2009i1p262-276.html
   My bibliography  Save this article

Wave of chaos in a diffusive system: Generating realistic patterns of patchiness in plankton–fish dynamics

Author

Listed:
  • Upadhyay, Ranjit Kumar
  • Kumari, Nitu
  • Rai, Vikas

Abstract

We show that wave of chaos (WOC) can generate two-dimensional time-independent spatial patterns which can be a potential candidate for understanding planktonic patchiness observed in marine environments. These spatio-temporal patterns were obtained in computer simulations of a minimal model of phytoplankton–zooplankton dynamics driven by forces of diffusion. We also attempt to figure out the average lifetimes of these non-linear non-equilibrium patterns. These spatial patterns serve as a realistic model for patchiness found in aquatic systems (e.g., marine and oceanic). Additionally, spatio-temporal chaos produced by bi-directional WOCs is robust to changes in key parameters of the system; e.g., intra-specific competition among individuals of phytoplankton and the rate of fish predation. The ideas contained in the present paper may find applications in diverse fields of human endeavor.

Suggested Citation

  • Upadhyay, Ranjit Kumar & Kumari, Nitu & Rai, Vikas, 2009. "Wave of chaos in a diffusive system: Generating realistic patterns of patchiness in plankton–fish dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 40(1), pages 262-276.
  • Handle: RePEc:eee:chsofr:v:40:y:2009:i:1:p:262-276
    DOI: 10.1016/j.chaos.2007.07.078
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077907005735
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2007.07.078?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Edward R. Abraham, 1998. "The generation of plankton patchiness by turbulent stirring," Nature, Nature, vol. 391(6667), pages 577-580, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Upadhyay, Ranjit Kumar & Kumari, Nitu & Rai, Vikas, 2009. "Exploring dynamical complexity in diffusion driven predator–prey systems: Effect of toxin producing phytoplankton and spatial heterogeneities," Chaos, Solitons & Fractals, Elsevier, vol. 42(1), pages 584-594.
    2. Zhao, Hongyong & Zhang, Xuebing & Huang, Xuanxuan, 2015. "Hopf bifurcation and spatial patterns of a delayed biological economic system with diffusion," Applied Mathematics and Computation, Elsevier, vol. 266(C), pages 462-480.
    3. Kumar, Vikas & Kumari, Nitu, 2021. "Bifurcation study and pattern formation analysis of a tritrophic food chain model with group defense and Ivlev-like nonmonotonic functional response," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    4. Joydev Chattopadhyay & Ezio Venturino & Samrat Chatterjee, 2013. "Aggregation of toxin-producing phytoplankton acts as a defence mechanism – a model-based study," Mathematical and Computer Modelling of Dynamical Systems, Taylor & Francis Journals, vol. 19(2), pages 159-174, April.
    5. Zhao, Hongyong & Huang, Xuanxuan & Zhang, Xuebing, 2015. "Hopf bifurcation and harvesting control of a bioeconomic plankton model with delay and diffusion terms," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 421(C), pages 300-315.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vilar, J.M.G. & Solé, R.V. & Rubı́, J.M., 2003. "On the origin of plankton patchiness," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 317(1), pages 239-246.
    2. Suresh, R. & Senthilkumar, D.V. & Lakshmanan, M. & Kurths, J., 2016. "Emergence of a common generalized synchronization manifold in network motifs of structurally different time-delay systems," Chaos, Solitons & Fractals, Elsevier, vol. 93(C), pages 235-245.
    3. Bengfort, Michael & Malchow, Horst, 2016. "Vertical mixing and hysteresis in the competition of buoyant and non-buoyant plankton prey species in a shallow lake," Ecological Modelling, Elsevier, vol. 323(C), pages 51-60.
    4. Wang, Ching-Hao & Matin, Sakib & George, Ashish B. & Korolev, Kirill S., 2019. "Pinned, locked, pushed, and pulled traveling waves in structured environments," Theoretical Population Biology, Elsevier, vol. 127(C), pages 102-119.
    5. Enrico Ser-Giacomi & Ricardo Martinez-Garcia & Stephanie Dutkiewicz & Michael J. Follows, 2023. "A Lagrangian model for drifting ecosystems reveals heterogeneity-driven enhancement of marine plankton blooms," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    6. Serizawa, H. & Amemiya, T. & Itoh, K., 2009. "Patchiness and bistability in the comprehensive cyanobacterial model (CCM)," Ecological Modelling, Elsevier, vol. 220(6), pages 764-773.
    7. Joydev Chattopadhyay & Ezio Venturino & Samrat Chatterjee, 2013. "Aggregation of toxin-producing phytoplankton acts as a defence mechanism – a model-based study," Mathematical and Computer Modelling of Dynamical Systems, Taylor & Francis Journals, vol. 19(2), pages 159-174, April.
    8. Das, Tanaya & Chakraborti, Saranya & Mukherjee, Joydeep & Sen, Goutam Kumar, 2018. "Mathematical modelling for phytoplankton distribution in Sundarbans Estuarine System, India," Ecological Modelling, Elsevier, vol. 368(C), pages 111-120.
    9. Ghorai, Santu & Chakraborty, Bhaskar & Bairagi, Nandadulal, 2021. "Preferential selection of zooplankton and emergence of spatiotemporal patterns in plankton population," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    10. Evgeniya Giricheva, 2024. "Taxis-Driven Pattern Formation in Tri-Trophic Food Chain Model with Omnivory," Mathematics, MDPI, vol. 12(2), pages 1-18, January.
    11. Della Rossa, Fabio & Fasani, Stefano & Rinaldi, Sergio, 2013. "Conditions for patchiness in plankton models," Theoretical Population Biology, Elsevier, vol. 83(C), pages 95-100.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:40:y:2009:i:1:p:262-276. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.