IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i2p290-d1320165.html
   My bibliography  Save this article

Taxis-Driven Pattern Formation in Tri-Trophic Food Chain Model with Omnivory

Author

Listed:
  • Evgeniya Giricheva

    (Institute of Automation and Control Processes, Far Eastern Branch of the Russian Academy of Science, 5 Radio Street, Vladivostok 690014, Russia)

Abstract

The spatiotemporal dynamics of a three-component model of a food web are considered. The model describes the interactions between populations of resources, prey, and predators that consume both species. It assumes that the predator responds to the spatial change in the resource and prey densities by occupying areas where species density is higher (prey-taxis) and that the prey population avoids areas with a high predator density (predator-taxis). This work studies the conditions for the taxis-driven instability leading to the emergence of stationary patterns resulting from Turing instability and autowaves caused by wave instability. The existence of nonconstant positive steady states for the system is assessed through a rigorous bifurcation analysis. Meanwhile, the conditions for the existence of both types of instabilities are obtained by linear stability analysis. It is shown that the presence of cross-diffusion in the system supports the formation of spatially heterogeneous patterns. For low values of the resource-tactic and predator-tactic coefficients, Turing and wave instabilities coexist. The system undergoes only Turing instability for high levels of these parameters.

Suggested Citation

  • Evgeniya Giricheva, 2024. "Taxis-Driven Pattern Formation in Tri-Trophic Food Chain Model with Omnivory," Mathematics, MDPI, vol. 12(2), pages 1-18, January.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:2:p:290-:d:1320165
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/2/290/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/2/290/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Edward R. Abraham, 1998. "The generation of plankton patchiness by turbulent stirring," Nature, Nature, vol. 391(6667), pages 577-580, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vilar, J.M.G. & Solé, R.V. & Rubı́, J.M., 2003. "On the origin of plankton patchiness," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 317(1), pages 239-246.
    2. Suresh, R. & Senthilkumar, D.V. & Lakshmanan, M. & Kurths, J., 2016. "Emergence of a common generalized synchronization manifold in network motifs of structurally different time-delay systems," Chaos, Solitons & Fractals, Elsevier, vol. 93(C), pages 235-245.
    3. Bengfort, Michael & Malchow, Horst, 2016. "Vertical mixing and hysteresis in the competition of buoyant and non-buoyant plankton prey species in a shallow lake," Ecological Modelling, Elsevier, vol. 323(C), pages 51-60.
    4. Wang, Ching-Hao & Matin, Sakib & George, Ashish B. & Korolev, Kirill S., 2019. "Pinned, locked, pushed, and pulled traveling waves in structured environments," Theoretical Population Biology, Elsevier, vol. 127(C), pages 102-119.
    5. Enrico Ser-Giacomi & Ricardo Martinez-Garcia & Stephanie Dutkiewicz & Michael J. Follows, 2023. "A Lagrangian model for drifting ecosystems reveals heterogeneity-driven enhancement of marine plankton blooms," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    6. Serizawa, H. & Amemiya, T. & Itoh, K., 2009. "Patchiness and bistability in the comprehensive cyanobacterial model (CCM)," Ecological Modelling, Elsevier, vol. 220(6), pages 764-773.
    7. Joydev Chattopadhyay & Ezio Venturino & Samrat Chatterjee, 2013. "Aggregation of toxin-producing phytoplankton acts as a defence mechanism – a model-based study," Mathematical and Computer Modelling of Dynamical Systems, Taylor & Francis Journals, vol. 19(2), pages 159-174, April.
    8. Das, Tanaya & Chakraborti, Saranya & Mukherjee, Joydeep & Sen, Goutam Kumar, 2018. "Mathematical modelling for phytoplankton distribution in Sundarbans Estuarine System, India," Ecological Modelling, Elsevier, vol. 368(C), pages 111-120.
    9. Ghorai, Santu & Chakraborty, Bhaskar & Bairagi, Nandadulal, 2021. "Preferential selection of zooplankton and emergence of spatiotemporal patterns in plankton population," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    10. Della Rossa, Fabio & Fasani, Stefano & Rinaldi, Sergio, 2013. "Conditions for patchiness in plankton models," Theoretical Population Biology, Elsevier, vol. 83(C), pages 95-100.
    11. Upadhyay, Ranjit Kumar & Kumari, Nitu & Rai, Vikas, 2009. "Wave of chaos in a diffusive system: Generating realistic patterns of patchiness in plankton–fish dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 40(1), pages 262-276.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:2:p:290-:d:1320165. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.