IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v421y2015icp300-315.html
   My bibliography  Save this article

Hopf bifurcation and harvesting control of a bioeconomic plankton model with delay and diffusion terms

Author

Listed:
  • Zhao, Hongyong
  • Huang, Xuanxuan
  • Zhang, Xuebing

Abstract

In this paper, we study the dynamics of a bioeconomic plankton model with delay and diffusion terms, in which phytoplankton is assumed to undergo exploitation. Some sufficient conditions ensuring the stability and bifurcation for the model are provided by using stability and bifurcation theory. Our results show that harvest effort can control bifurcation and resume system’s stability in the case of positive economic profit, and over exploitation will result in the extinction of the population which is in line with reality. Finally, some numerical simulations are given to verify the analytical results of nutrient–phytoplankton–zooplankton–fish model.

Suggested Citation

  • Zhao, Hongyong & Huang, Xuanxuan & Zhang, Xuebing, 2015. "Hopf bifurcation and harvesting control of a bioeconomic plankton model with delay and diffusion terms," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 421(C), pages 300-315.
  • Handle: RePEc:eee:phsmap:v:421:y:2015:i:c:p:300-315
    DOI: 10.1016/j.physa.2014.11.042
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437114010000
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2014.11.042?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Upadhyay, Ranjit Kumar & Kumari, Nitu & Rai, Vikas, 2009. "Wave of chaos in a diffusive system: Generating realistic patterns of patchiness in plankton–fish dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 40(1), pages 262-276.
    2. Gao, Shujing & Chen, Lansun, 2005. "The effect of seasonal harvesting on a single-species discrete population model with stage structure and birth pulses," Chaos, Solitons & Fractals, Elsevier, vol. 24(4), pages 1013-1023.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Chao & Wang, Luping & Zhang, Qingling & Yan, Yun, 2017. "Dynamical analysis in a bioeconomic phytoplankton zooplankton system with double time delays and environmental stochasticity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 482(C), pages 682-698.
    2. Huang, Chengdai, 2018. "Multiple scales scheme for bifurcation in a delayed extended van der Pol oscillator," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 643-652.
    3. Chuanjun Dai & Hengguo Yu & Qing Guo & He Liu & Qi Wang & Zengling Ma & Min Zhao, 2019. "Dynamics Induced by Delay in a Nutrient-Phytoplankton Model with Multiple Delays," Complexity, Hindawi, vol. 2019, pages 1-16, February.
    4. Gökçe, Aytül & Yazar, Samire & Sekerci, Yadigar, 2020. "Delay induced nonlinear dynamics of oxygen-plankton interactions," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    5. Gökçe, Aytül, 2022. "A dynamic interplay between Allee effect and time delay in a mathematical model with weakening memory," Applied Mathematics and Computation, Elsevier, vol. 430(C).
    6. Liang, Yuqin & Jia, Yunfeng, 2022. "Stability and Hopf bifurcation of a diffusive plankton model with time-delay and mixed nonlinear functional responses," Chaos, Solitons & Fractals, Elsevier, vol. 163(C).
    7. Pal, D. & Samanta, G.P. & Mahapatra, G.S., 2017. "Selective harvesting of two competing fish species in the presence of toxicity with time delay," Applied Mathematics and Computation, Elsevier, vol. 313(C), pages 74-93.
    8. Liu, Chao & Yu, Longfei & Zhang, Qingling & Li, Yuanke, 2018. "Dynamic analysis of a hybrid bioeconomic plankton system with double time delays and stochastic fluctuations," Applied Mathematics and Computation, Elsevier, vol. 316(C), pages 115-137.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Hongyong & Zhang, Xuebing & Huang, Xuanxuan, 2015. "Hopf bifurcation and spatial patterns of a delayed biological economic system with diffusion," Applied Mathematics and Computation, Elsevier, vol. 266(C), pages 462-480.
    2. Gu, En-Guo & Hao, Yu-Dong, 2007. "On the global analysis of dynamics in a delayed regulation model with an external interference," Chaos, Solitons & Fractals, Elsevier, vol. 34(4), pages 1272-1284.
    3. Gao, Shujing & Chen, Lansun & Sun, Lihua, 2005. "Dynamic complexities in a seasonal prevention epidemic model with birth pulses," Chaos, Solitons & Fractals, Elsevier, vol. 26(4), pages 1171-1181.
    4. Kumar, Vikas & Kumari, Nitu, 2021. "Bifurcation study and pattern formation analysis of a tritrophic food chain model with group defense and Ivlev-like nonmonotonic functional response," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    5. Zhang, Xue & Zhang, Qing-Ling & Liu, Chao & Xiang, Zhong-Yi, 2009. "Bifurcations of a singular prey–predator economic model with time delay and stage structure," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1485-1494.
    6. Yun Liu & Lifeng Guo & Xijuan Liu, 2023. "Dynamical Behaviors in a Stage-Structured Model with a Birth Pulse," Mathematics, MDPI, vol. 11(15), pages 1-13, July.
    7. Joydev Chattopadhyay & Ezio Venturino & Samrat Chatterjee, 2013. "Aggregation of toxin-producing phytoplankton acts as a defence mechanism – a model-based study," Mathematical and Computer Modelling of Dynamical Systems, Taylor & Francis Journals, vol. 19(2), pages 159-174, April.
    8. Çelik, C. & Merdan, H. & Duman, O. & Akın, Ö., 2008. "Allee effects on population dynamics with delay," Chaos, Solitons & Fractals, Elsevier, vol. 37(1), pages 65-74.
    9. Jiao, Jianjun & Chen, Lansun & Cai, Shaohong, 2009. "A delayed stage-structured Holling II predator–prey model with mutual interference and impulsive perturbations on predator," Chaos, Solitons & Fractals, Elsevier, vol. 40(4), pages 1946-1955.
    10. Upadhyay, Ranjit Kumar & Kumari, Nitu & Rai, Vikas, 2009. "Exploring dynamical complexity in diffusion driven predator–prey systems: Effect of toxin producing phytoplankton and spatial heterogeneities," Chaos, Solitons & Fractals, Elsevier, vol. 42(1), pages 584-594.
    11. Gao, Shujing & Chen, Lansun & Sun, Lihua, 2005. "Optimal pulse fishing policy in stage-structured models with birth pulses," Chaos, Solitons & Fractals, Elsevier, vol. 25(5), pages 1209-1219.
    12. Banerjee, Ritwick & Das, Pritha & Mukherjee, Debasis, 2018. "Stability and permanence of a discrete-time two-prey one-predator system with Holling Type-III functional response," Chaos, Solitons & Fractals, Elsevier, vol. 117(C), pages 240-248.
    13. Cui, Qianqian & Zhang, Qiang & Qiu, Zhipeng & Hu, Zengyun, 2016. "Complex dynamics of a discrete-time predator-prey system with Holling IV functional response," Chaos, Solitons & Fractals, Elsevier, vol. 87(C), pages 158-171.
    14. Gao, Shujing & Teng, Zhidong & Xie, Dehui, 2009. "Analysis of a delayed SIR epidemic model with pulse vaccination," Chaos, Solitons & Fractals, Elsevier, vol. 40(2), pages 1004-1011.
    15. Ahjond S. Garmestani & Craig R. Allen & Colin M. Gallagher & John D. Mittelstaedt, 2007. "Departures from Gibrat's Law, Discontinuities and City Size Distributions," Urban Studies, Urban Studies Journal Limited, vol. 44(10), pages 1997-2007, September.
    16. Wang, Fengyan & Pang, Guoping, 2009. "The global stability of a delayed predator–prey system with two stage-structure," Chaos, Solitons & Fractals, Elsevier, vol. 40(2), pages 778-785.
    17. Jiang, Zhichao & Wei, Junjie, 2008. "Stability and bifurcation analysis in a delayed SIR model," Chaos, Solitons & Fractals, Elsevier, vol. 35(3), pages 609-619.
    18. Liu, Bing & Teng, Zhidong & Liu, Wanbo, 2007. "Dynamic behaviors of the periodic Lotka–Volterra competing system with impulsive perturbations," Chaos, Solitons & Fractals, Elsevier, vol. 31(2), pages 356-370.
    19. Yang, Xiaofeng & Jin, Zhen & Xue, Yakui, 2007. "Weak average persistence and extinction of a predator–prey system in a polluted environment with impulsive toxicant input," Chaos, Solitons & Fractals, Elsevier, vol. 31(3), pages 726-735.
    20. Xiang, Zhongyi & Song, Xinyu, 2007. "A model of competition between plasmid-bearing and plasmid-free organisms in a chemostat with periodic input," Chaos, Solitons & Fractals, Elsevier, vol. 32(4), pages 1419-1428.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:421:y:2015:i:c:p:300-315. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.