IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v194y2025ics0960077925002346.html
   My bibliography  Save this article

Influences of the graphene reinforcements on the natural vibrational properties, nonlinear flutter responses, and the chaotic motions of the FG-GR laminated composite cantilever rectangular variable cross-section plate in the supersonic flow

Author

Listed:
  • Jiang, Y.
  • Wang, Y.
  • Zhang, W.
  • Zhang, Y.F.
  • Lu, S.F.
  • Du, X.

Abstract

Due to the excellent mechanical and lightweight properties of the graphene-reinforced composite structure, it can meet the design requirements of modern aircraft comments. In this paper, the aircraft wings with low aspect ratio are modelled as the functionally graded graphene-reinforced laminated composite cantilever rectangular (FG-GRLCCR) variable cross-section plate. The influences of the graphene reinforcements on the natural vibrational properties, the nonlinear flutter responses, and the chaotic motions of the FG-GRLCCR variable cross-section plate are investigated. The extended Halpin-Tsai model is used to calculate the mechanical parameters for the graphene-reinforced composite materials. The first-order piston theory is applied to simulate the aerodynamic force on the FG-GRLCCR variable cross-section plate in supersonic flow. Considering the classical laminated theory, the von Karman large deformation theory, and the simple harmonic excitation, the dynamic partial differential equations for the FG-GRLCCR variable cross-section plate are derived by the Hamilton principle. The nonlinear ordinary partial equations of the system are given based on the Galerkin truncation technique. The frequency loci veering phenomenon and vibrational mode interaction for the FG-GRLCCR variable cross-section plate are obtained by the Rayleigh-Ritz method. The nonlinear flutter responses of the FG-GRLCCR variable cross-section plate are analyzed before and after critical flutter pressure. The bifurcation diagrams, Maximum Lyapunov exponent diagram, phase diagram, waveform diagram, and Poincaré cross-section diagram of the system are depicted for investigating the influence the graphene reinforcements on the nonlinear dynamic responses. The results showed that the graphene reinforcements and distributed patterns can change the frequency loci veering phenomenon, improve the critical flutter pressure and reduce the occurrence of chaotic motions of the FG-GRLCCR variable cross-section plate.

Suggested Citation

  • Jiang, Y. & Wang, Y. & Zhang, W. & Zhang, Y.F. & Lu, S.F. & Du, X., 2025. "Influences of the graphene reinforcements on the natural vibrational properties, nonlinear flutter responses, and the chaotic motions of the FG-GR laminated composite cantilever rectangular variable c," Chaos, Solitons & Fractals, Elsevier, vol. 194(C).
  • Handle: RePEc:eee:chsofr:v:194:y:2025:i:c:s0960077925002346
    DOI: 10.1016/j.chaos.2025.116221
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077925002346
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2025.116221?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. K. S. Novoselov & V. I. Fal′ko & L. Colombo & P. R. Gellert & M. G. Schwab & K. Kim, 2012. "A roadmap for graphene," Nature, Nature, vol. 490(7419), pages 192-200, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dehui Zhang & Zhen Xu & Gong Cheng & Zhe Liu & Audrey Rose Gutierrez & Wenzhe Zang & Theodore B. Norris & Zhaohui Zhong, 2022. "Strongly enhanced THz generation enabled by a graphene hot-carrier fast lane," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    2. Wei Zhao & Liang Luo & Muyu Cong & Xueyan Liu & Zhiyun Zhang & Mounib Bahri & Boyu Li & Jing Yang & Miaojie Yu & Lunjie Liu & Yu Xia & Nigel D. Browning & Wei-Hong Zhu & Weiwei Zhang & Andrew I. Coope, 2024. "Nanoscale covalent organic frameworks for enhanced photocatalytic hydrogen production," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Jia Yen Lai & Lock Hei Ngu & Siti Salwa Hashim, 2021. "A review of CO2 adsorbents performance for different carbon capture technology processes conditions," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 11(5), pages 1076-1117, October.
    4. Li, Yong & Song, Jian & Yang, Jie, 2015. "Graphene models and nano-scale characterization technologies for fuel cell vehicle electrodes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 66-77.
    5. Xiao-Ting Yin & En-Ming You & Ru-Yu Zhou & Li-Hong Zhu & Wei-Wei Wang & Kai-Xuan Li & De-Yin Wu & Yu Gu & Jian-Feng Li & Bing-Wei Mao & Jia-Wei Yan, 2024. "Unraveling the energy storage mechanism in graphene-based nonaqueous electrochemical capacitors by gap-enhanced Raman spectroscopy," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    6. Li, Yong & Yang, Jie & Song, Jian, 2017. "Structure models and nano energy system design for proton exchange membrane fuel cells in electric energy vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 160-172.
    7. Junxiong Guo & Shuyi Gu & Lin Lin & Yu Liu & Ji Cai & Hongyi Cai & Yu Tian & Yuelin Zhang & Qinghua Zhang & Ze Liu & Yafei Zhang & Xiaosheng Zhang & Yuan Lin & Wen Huang & Lin Gu & Jinxing Zhang, 2024. "Type-printable photodetector arrays for multichannel meta-infrared imaging," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    8. Ling Ding & Tianqi Xu & Jiawen Zhang & Jinpeng Ji & Zhaotao Song & Yanan Zhang & Yijun Xu & Tong Liu & Yang Liu & Zihan Zhang & Wenbin Gong & Yunong Wang & Zhenzhong Shi & Renzhi Ma & Jianxin Geng & H, 2024. "Covalently bridging graphene edges for improving mechanical and electrical properties of fibers," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    9. Jaimes-Paez, C.D. & Morallón, E. & Cazorla-Amorós, D., 2023. "Few layers graphene-based electrocatalysts for ORR synthesized by electrochemical exfoliation methods," Energy, Elsevier, vol. 278(PA).
    10. Daniel Rueda-García & María del Rocío Rodríguez-Laguna & Emigdio Chávez-Angel & Deepak P. Dubal & Zahilia Cabán-Huertas & Raúl Benages-Vilau & Pedro Gómez-Romero, 2019. "From Thermal to Electroactive Graphene Nanofluids," Energies, MDPI, vol. 12(23), pages 1-11, November.
    11. Di Blasi, O. & Briguglio, N. & Busacca, C. & Ferraro, M. & Antonucci, V. & Di Blasi, A., 2015. "Electrochemical investigation of thermically treated graphene oxides as electrode materials for vanadium redox flow battery," Applied Energy, Elsevier, vol. 147(C), pages 74-81.
    12. Le Cheng & Chi Shun Yeung & Libei Huang & Ge Ye & Jie Yan & Wanpeng Li & Chunki Yiu & Fu-Rong Chen & Hanchen Shen & Ben Zhong Tang & Yang Ren & Xinge Yu & Ruquan Ye, 2024. "Flash healing of laser-induced graphene," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    13. Wang, Chang & Geng, Hongjun & Sun, Rui & Song, Huiling, 2022. "Technological potential analysis and vacant technology forecasting in the graphene field based on the patent data mining," Resources Policy, Elsevier, vol. 77(C).
    14. Christos Kalantaridis, 2019. "Is university ownership a sub-optimal property rights regime for commercialisation? Information conditions and entrepreneurship in Greater Manchester, England," The Journal of Technology Transfer, Springer, vol. 44(1), pages 231-249, February.
    15. Li, Yong & Yang, Jie & Song, Jian, 2017. "Nano energy system model and nanoscale effect of graphene battery in renewable energy electric vehicle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 652-663.
    16. Vladimir S. Prudkovskiy & Yiran Hu & Kaimin Zhang & Yue Hu & Peixuan Ji & Grant Nunn & Jian Zhao & Chenqian Shi & Antonio Tejeda & David Wander & Alessandro Cecco & Clemens B. Winkelmann & Yuxuan Jian, 2022. "An epitaxial graphene platform for zero-energy edge state nanoelectronics," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    17. Sanjay K. Arora & Jan Youtie & Philip Shapira & Lidan Gao & TingTing Ma, 2013. "Entry strategies in an emerging technology: a pilot web-based study of graphene firms," Scientometrics, Springer;Akadémiai Kiadó, vol. 95(3), pages 1189-1207, June.
    18. Akbari, Elnaz & Buntat, Zolkafle & Nikoukar, Ali & Kheirandish, Azadeh & Khaledian, Mohsen & Afroozeh, Abdolkarim, 2016. "Sensor application in Direct Methanol Fuel Cells (DMFCs)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1125-1139.
    19. Xinyu Huang & Luman Zhang & Lei Tong & Zheng Li & Zhuiri Peng & Runfeng Lin & Wenhao Shi & Kan-Hao Xue & Hongwei Dai & Hui Cheng & Danilo de Camargo Branco & Jianbin Xu & Junbo Han & Gary J. Cheng & X, 2023. "Manipulating exchange bias in 2D magnetic heterojunction for high-performance robust memory applications," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    20. Zhao Wang & Wenlin Liu & Jiaxin Shao & He Hao & Guorui Wang & Yixuan Zhao & Yeshu Zhu & Kaicheng Jia & Qi Lu & Jiawei Yang & Yanfeng Zhang & Lianming Tong & Yuqing Song & Pengzhan Sun & Boyang Mao & C, 2024. "Cyclododecane-based high-intactness and clean transfer method for fabricating suspended two-dimensional materials," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:194:y:2025:i:c:s0960077925002346. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.