IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-34369-4.html
   My bibliography  Save this article

An epitaxial graphene platform for zero-energy edge state nanoelectronics

Author

Listed:
  • Vladimir S. Prudkovskiy

    (Tianjin University
    School of Physics, Georgia Institute of Technology
    Institut Néel, Univ. Grenoble Alpes, CNRS, Grenoble INP)

  • Yiran Hu

    (School of Physics, Georgia Institute of Technology)

  • Kaimin Zhang

    (Tianjin University)

  • Yue Hu

    (School of Physics, Georgia Institute of Technology)

  • Peixuan Ji

    (Tianjin University)

  • Grant Nunn

    (School of Physics, Georgia Institute of Technology)

  • Jian Zhao

    (Tianjin University)

  • Chenqian Shi

    (Tianjin University)

  • Antonio Tejeda

    (Laboratoire de Physique des Solides, CNRS, Univ. Paris-Sud
    Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin)

  • David Wander

    (Institut Néel, Univ. Grenoble Alpes, CNRS, Grenoble INP)

  • Alessandro Cecco

    (Institut Néel, Univ. Grenoble Alpes, CNRS, Grenoble INP)

  • Clemens B. Winkelmann

    (Institut Néel, Univ. Grenoble Alpes, CNRS, Grenoble INP)

  • Yuxuan Jiang

    (National High Magnetic Field Laboratory)

  • Tianhao Zhao

    (School of Physics, Georgia Institute of Technology)

  • Katsunori Wakabayashi

    (Kwansei Gakuin University
    Osaka University)

  • Zhigang Jiang

    (School of Physics, Georgia Institute of Technology)

  • Lei Ma

    (Tianjin University
    Tianjin University)

  • Claire Berger

    (School of Physics, Georgia Institute of Technology
    Institut Néel, Univ. Grenoble Alpes, CNRS, Grenoble INP
    Laboratoire de Recherche International 2958 Georgia Tech-CNRS)

  • Walt A. Heer

    (Tianjin University
    School of Physics, Georgia Institute of Technology)

Abstract

Graphene’s original promise to succeed silicon faltered due to pervasive edge disorder in lithographically patterned deposited graphene and the lack of a new electronics paradigm. Here we demonstrate that the annealed edges in conventionally patterned graphene epitaxially grown on a silicon carbide substrate (epigraphene) are stabilized by the substrate and support a protected edge state. The edge state has a mean free path that is greater than 50 microns, 5000 times greater than the bulk states and involves a theoretically unexpected Majorana-like zero-energy non-degenerate quasiparticle that does not produce a Hall voltage. In seamless integrated structures, the edge state forms a zero-energy one-dimensional ballistic network with essentially dissipationless nodes at ribbon–ribbon junctions. Seamless device structures offer a variety of switching possibilities including quantum coherent devices at low temperatures. This makes epigraphene a technologically viable graphene nanoelectronics platform that has the potential to succeed silicon nanoelectronics.

Suggested Citation

  • Vladimir S. Prudkovskiy & Yiran Hu & Kaimin Zhang & Yue Hu & Peixuan Ji & Grant Nunn & Jian Zhao & Chenqian Shi & Antonio Tejeda & David Wander & Alessandro Cecco & Clemens B. Winkelmann & Yuxuan Jian, 2022. "An epitaxial graphene platform for zero-energy edge state nanoelectronics," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34369-4
    DOI: 10.1038/s41467-022-34369-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-34369-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-34369-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. A. Aharon-Steinberg & A. Marguerite & D. J. Perello & K. Bagani & T. Holder & Y. Myasoedov & L. S. Levitov & A. K. Geim & E. Zeldov, 2021. "Long-range nontopological edge currents in charge-neutral graphene," Nature, Nature, vol. 593(7860), pages 528-534, May.
    2. Yuanbo Zhang & Yan-Wen Tan & Horst L. Stormer & Philip Kim, 2005. "Experimental observation of the quantum Hall effect and Berry's phase in graphene," Nature, Nature, vol. 438(7065), pages 201-204, November.
    3. Sander J. Tans & Alwin R. M. Verschueren & Cees Dekker, 1998. "Room-temperature transistor based on a single carbon nanotube," Nature, Nature, vol. 393(6680), pages 49-52, May.
    4. K. S. Novoselov & V. I. Fal′ko & L. Colombo & P. R. Gellert & M. G. Schwab & K. Kim, 2012. "A roadmap for graphene," Nature, Nature, vol. 490(7419), pages 192-200, October.
    5. Jens Baringhaus & Ming Ruan & Frederik Edler & Antonio Tejeda & Muriel Sicot & Amina Taleb-Ibrahimi & An-Ping Li & Zhigang Jiang & Edward H. Conrad & Claire Berger & Christoph Tegenkamp & Walt A. de H, 2014. "Exceptional ballistic transport in epitaxial graphene nanoribbons," Nature, Nature, vol. 506(7488), pages 349-354, February.
    6. Young-Woo Son & Marvin L. Cohen & Steven G. Louie, 2006. "Half-metallic graphene nanoribbons," Nature, Nature, vol. 444(7117), pages 347-349, November.
    7. R. de Picciotto & H. L. Stormer & L. N. Pfeiffer & K. W. Baldwin & K. W. West, 2001. "Four-terminal resistance of a ballistic quantum wire," Nature, Nature, vol. 411(6833), pages 51-54, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nauman Javed, Rana Muhammad & Al-Othman, Amani & Tawalbeh, Muhammad & Olabi, Abdul Ghani, 2022. "Recent developments in graphene and graphene oxide materials for polymer electrolyte membrane fuel cells applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    2. Anh-Luan Phan & Dai-Nam Le, 2021. "Electronic transport in two-dimensional strained Dirac materials under multi-step Fermi velocity barrier: transfer matrix method for supersymmetric systems," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(8), pages 1-16, August.
    3. Kiani, Keivan, 2015. "Nanomechanical sensors based on elastically supported double-walled carbon nanotubes," Applied Mathematics and Computation, Elsevier, vol. 270(C), pages 216-241.
    4. Dehui Zhang & Zhen Xu & Gong Cheng & Zhe Liu & Audrey Rose Gutierrez & Wenzhe Zang & Theodore B. Norris & Zhaohui Zhong, 2022. "Strongly enhanced THz generation enabled by a graphene hot-carrier fast lane," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    5. Li, Yong & Song, Jian & Yang, Jie, 2015. "Graphene models and nano-scale characterization technologies for fuel cell vehicle electrodes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 66-77.
    6. Anqi Wang & Yupeng Li & Guang Yang & Dayu Yan & Yuan Huang & Zhaopeng Guo & Jiacheng Gao & Jierui Huang & Qiaochu Zeng & Degui Qian & Hao Wang & Xingchen Guo & Fanqi Meng & Qinghua Zhang & Lin Gu & Xi, 2023. "A robust and tunable Luttinger liquid in correlated edge of transition-metal second-order topological insulator Ta2Pd3Te5," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    7. Austin J. Way & Robert M. Jacobberger & Nathan P. Guisinger & Vivek Saraswat & Xiaoqi Zheng & Anjali Suresh & Jonathan H. Dwyer & Padma Gopalan & Michael S. Arnold, 2022. "Graphene nanoribbons initiated from molecularly derived seeds," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    8. M. T. Greenaway & P. Kumaravadivel & J. Wengraf & L. A. Ponomarenko & A. I. Berdyugin & J. Li & J. H. Edgar & R. Krishna Kumar & A. K. Geim & L. Eaves, 2021. "Graphene’s non-equilibrium fermions reveal Doppler-shifted magnetophonon resonances accompanied by Mach supersonic and Landau velocity effects," Nature Communications, Nature, vol. 12(1), pages 1-6, December.
    9. Zheyu Cheng & Yi-Jun Guan & Haoran Xue & Yong Ge & Ding Jia & Yang Long & Shou-Qi Yuan & Hong-Xiang Sun & Yidong Chong & Baile Zhang, 2024. "Three-dimensional flat Landau levels in an inhomogeneous acoustic crystal," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    10. Daniel Rueda-García & María del Rocío Rodríguez-Laguna & Emigdio Chávez-Angel & Deepak P. Dubal & Zahilia Cabán-Huertas & Raúl Benages-Vilau & Pedro Gómez-Romero, 2019. "From Thermal to Electroactive Graphene Nanofluids," Energies, MDPI, vol. 12(23), pages 1-11, November.
    11. Di Blasi, O. & Briguglio, N. & Busacca, C. & Ferraro, M. & Antonucci, V. & Di Blasi, A., 2015. "Electrochemical investigation of thermically treated graphene oxides as electrode materials for vanadium redox flow battery," Applied Energy, Elsevier, vol. 147(C), pages 74-81.
    12. Timon Rabczuk & Mohammad Reza Azadi Kakavand & Raahul Palanivel Uma & Ali Hossein Nezhad Shirazi & Meysam Makaremi, 2018. "Thermal Conductance along Hexagonal Boron Nitride and Graphene Grain Boundaries," Energies, MDPI, vol. 11(6), pages 1-14, June.
    13. Le Cheng & Chi Shun Yeung & Libei Huang & Ge Ye & Jie Yan & Wanpeng Li & Chunki Yiu & Fu-Rong Chen & Hanchen Shen & Ben Zhong Tang & Yang Ren & Xinge Yu & Ruquan Ye, 2024. "Flash healing of laser-induced graphene," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    14. Yu Zhou & Xinyu Zhang & Guan Sheng & Shengda Wang & Muqing Chen & Guilin Zhuang & Yihan Zhu & Pingwu Du, 2023. "A metal-free photoactive nitrogen-doped carbon nanosolenoid with broad absorption in visible region for efficient photocatalysis," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    15. Christos Kalantaridis, 2019. "Is university ownership a sub-optimal property rights regime for commercialisation? Information conditions and entrepreneurship in Greater Manchester, England," The Journal of Technology Transfer, Springer, vol. 44(1), pages 231-249, February.
    16. Dongfei Wang & De-Liang Bao & Qi Zheng & Chang-Tian Wang & Shiyong Wang & Peng Fan & Shantanu Mishra & Lei Tao & Yao Xiao & Li Huang & Xinliang Feng & Klaus Müllen & Yu-Yang Zhang & Roman Fasel & Pasc, 2023. "Twisted bilayer zigzag-graphene nanoribbon junctions with tunable edge states," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    17. Lijun Zhu & Xiaoqiang Liu & Lin Li & Xinyi Wan & Ran Tao & Zhongniu Xie & Ji Feng & Changgan Zeng, 2023. "Signature of quantum interference effect in inter-layer Coulomb drag in graphene-based electronic double-layer systems," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    18. Mussad M. Alzahrani & Anurag Roy & Senthilarasu Sundaram & Tapas K. Mallick, 2021. "Investigation of Thermal Stress Arising in a Graphene Neutral Density Filter for Concentrated Photovoltaic System," Energies, MDPI, vol. 14(12), pages 1-9, June.
    19. Ewelina Szymczykiewicz & Ihor Bordun & Vitalii Maksymych & Myroslava Klapchuk & Zenoviy Kohut & Anatoliy Borysiuk & Yuriy Kulyk & Fedir Ivashchyshyn, 2024. "Charge Storage and Magnetic Properties Nitrogen-Containing Nanoporous Bio-Carbon," Energies, MDPI, vol. 17(4), pages 1-20, February.
    20. Xinyu Huang & Luman Zhang & Lei Tong & Zheng Li & Zhuiri Peng & Runfeng Lin & Wenhao Shi & Kan-Hao Xue & Hongwei Dai & Hui Cheng & Danilo de Camargo Branco & Jianbin Xu & Junbo Han & Gary J. Cheng & X, 2023. "Manipulating exchange bias in 2D magnetic heterojunction for high-performance robust memory applications," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34369-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.