Author
Listed:
- Chen, Ding
- Mei, Mengjun
- Jiang, Jin
- Wang, Cheng
Abstract
In view of the limitations of fractal models with single fractal dimension in representing the spatial non-uniform distribution of urban rail transit network, a segmented fractal model is established by summarizing the variation patterns of inflection points in network length curves and the definition of binary classification in spatial distribution analysis. This model adheres to the countable additivity definition of the measurement for disjoint fractal sets and retains the inherent measurement relationship in fractal theory. By examining the results of spatial distribution analysis derived from typical urban rail transit network data, the correlation between model parameters and spatial distribution characteristics is investigated. This process validates the effectiveness of the model while also exploring the physical meaning of its parameters. The results show that the segmented point in this model divides the network into two domains. The fractal dimensions corresponding to the first and second domains are relatively independent and can be utilized to characterize the spatial heterogeneous growth rate of the network. Segmented point in this model is identified as the main parameter that exhibits significant positive correlations with the spatial distribution characteristics, including the standard deviation distance, semi-major axis and semi-minor axis. The correlation coefficients are 0.89, 0.90, and 0.75, respectively. These results indicate that the network located within the first domain demonstrates an aggregation distribution characteristic, whereas that within the second domain exhibits a dispersion distribution characteristic. Besides, the parameters in the model have been found to inadequately reflect the intensity of directional distribution within the network. However, the segmented point within these model parameters can serve as an indicator for the coverage range of a directionally distributed network along both its semi-major and semi-minor axes.
Suggested Citation
Chen, Ding & Mei, Mengjun & Jiang, Jin & Wang, Cheng, 2025.
"A segmented fractal model associated with the spatial distribution characteristics of urban rail transit network,"
Chaos, Solitons & Fractals, Elsevier, vol. 194(C).
Handle:
RePEc:eee:chsofr:v:194:y:2025:i:c:s0960077925001262
DOI: 10.1016/j.chaos.2025.116113
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:194:y:2025:i:c:s0960077925001262. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.