IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v192y2025ics0960077925000220.html
   My bibliography  Save this article

Fractional-order gradient approach for optimizing neural networks: A theoretical and empirical analysis

Author

Listed:
  • Harjule, Priyanka
  • Sharma, Rinki
  • Kumar, Rajesh

Abstract

This article proposes a modified fractional gradient descent algorithm to enhance the learning capabilities of neural networks, comprising the benefits of a metaheuristic optimizer. The use of fractional derivatives, which possess memory properties, offers an additional degree of adaptability to the network. The convergence of the fractional gradient descent algorithm, incorporating the Caputo derivative in the neural network’s backpropagation process, is thoroughly examined, and a detailed convergence analysis is provided which indicates that it enables a more gradual and controlled adaptation of the network to the data. Additionally, the optimal fractional order has been found for each dataset, a contribution that has not been previously explored in the literature, which has a significant impact on the training of neural networks with fractional gradient backpropagation. In the experiments, four classification datasets and one regression dataset were used, and the results consistently show that the proposed hybrid algorithm achieves faster convergence across all cases. The empirical results with the proposed algorithm are supported by theoretical convergence analysis. Empirical results demonstrate that the proposed optimizer with optimal order yields more accurate results compared to existing optimizers.

Suggested Citation

  • Harjule, Priyanka & Sharma, Rinki & Kumar, Rajesh, 2025. "Fractional-order gradient approach for optimizing neural networks: A theoretical and empirical analysis," Chaos, Solitons & Fractals, Elsevier, vol. 192(C).
  • Handle: RePEc:eee:chsofr:v:192:y:2025:i:c:s0960077925000220
    DOI: 10.1016/j.chaos.2025.116009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077925000220
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2025.116009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Han, Xiaohui & Dong, Jianping, 2023. "Applications of fractional gradient descent method with adaptive momentum in BP neural networks," Applied Mathematics and Computation, Elsevier, vol. 448(C).
    2. Fang, Jing, 2020. "Prediction and analysis of regional economic income multiplication capability based on fractional accumulation and integral model," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    3. Changpin Li & Deliang Qian & YangQuan Chen, 2011. "On Riemann-Liouville and Caputo Derivatives," Discrete Dynamics in Nature and Society, Hindawi, vol. 2011, pages 1-15, March.
    4. Chen, Yuquan & Gao, Qing & Wei, Yiheng & Wang, Yong, 2017. "Study on fractional order gradient methods," Applied Mathematics and Computation, Elsevier, vol. 314(C), pages 310-321.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elnady, Sroor M. & El-Beltagy, Mohamed & Radwan, Ahmed G. & Fouda, Mohammed E., 2025. "A comprehensive survey of fractional gradient descent methods and their convergence analysis," Chaos, Solitons & Fractals, Elsevier, vol. 194(C).
    2. Mao, Jianfeng & Li, Zheng & Yu, Zhiwu & Hu, Lianjun & Khan, Mansoor & Wu, Jun, 2025. "A novel hybrid approach combining PDEM and bayesian optimization deep learning for stochastic vibration analysis in train-track-bridge coupled system," Reliability Engineering and System Safety, Elsevier, vol. 257(PA).
    3. Zhokh, Alexey & Strizhak, Peter, 2018. "Thiele modulus having regard to the anomalous diffusion in a catalyst pellet," Chaos, Solitons & Fractals, Elsevier, vol. 109(C), pages 58-63.
    4. Naveed Ishtiaq Chaudhary & Muhammad Asif Zahoor Raja & Zeshan Aslam Khan & Khalid Mehmood Cheema & Ahmad H. Milyani, 2021. "Hierarchical Quasi-Fractional Gradient Descent Method for Parameter Estimation of Nonlinear ARX Systems Using Key Term Separation Principle," Mathematics, MDPI, vol. 9(24), pages 1-14, December.
    5. Chaudhary, Naveed Ishtiaq & Raja, Muhammad Asif Zahoor & Khan, Zeshan Aslam & Mehmood, Ammara & Shah, Syed Muslim, 2022. "Design of fractional hierarchical gradient descent algorithm for parameter estimation of nonlinear control autoregressive systems," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    6. Zhang, Hui & Zhou, Shenglong & Li, Geoffrey Ye & Xiu, Naihua & Wang, Yiju, 2025. "A step function based recursion method for 0/1 deep neural networks," Applied Mathematics and Computation, Elsevier, vol. 488(C).
    7. Han, Xiaohui & Dong, Jianping, 2023. "Applications of fractional gradient descent method with adaptive momentum in BP neural networks," Applied Mathematics and Computation, Elsevier, vol. 448(C).
    8. Zeid, Samaneh Soradi, 2019. "Approximation methods for solving fractional equations," Chaos, Solitons & Fractals, Elsevier, vol. 125(C), pages 171-193.
    9. Balasubramaniam, P., 2022. "Solvability of Atangana-Baleanu-Riemann (ABR) fractional stochastic differential equations driven by Rosenblatt process via measure of noncompactness," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    10. Ravi Agarwal & Snezhana Hristova & Donal O’Regan, 2021. "Stability Concepts of Riemann-Liouville Fractional-Order Delay Nonlinear Systems," Mathematics, MDPI, vol. 9(4), pages 1-16, February.
    11. Yi-Chung Hu, 2021. "Forecasting tourism demand using fractional grey prediction models with Fourier series," Annals of Operations Research, Springer, vol. 300(2), pages 467-491, May.
    12. Zaineb Yakoub & Omar Naifar & Dmitriy Ivanov, 2022. "Unbiased Identification of Fractional Order System with Unknown Time-Delay Using Bias Compensation Method," Mathematics, MDPI, vol. 10(16), pages 1-19, August.
    13. Ghanbari, Behzad & Kumar, Sunil & Kumar, Ranbir, 2020. "A study of behaviour for immune and tumor cells in immunogenetic tumour model with non-singular fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    14. Christopher Nicholas Angstmann & Byron Alexander Jacobs & Bruce Ian Henry & Zhuang Xu, 2020. "Intrinsic Discontinuities in Solutions of Evolution Equations Involving Fractional Caputo–Fabrizio and Atangana–Baleanu Operators," Mathematics, MDPI, vol. 8(11), pages 1-16, November.
    15. Tomasz Raszkowski & Mariusz Zubert, 2020. "Investigation of Heat Diffusion at Nanoscale Based on Thermal Analysis of Real Test Structure," Energies, MDPI, vol. 13(9), pages 1-18, May.
    16. Kumar, Vivek, 2022. "Stochastic fractional heat equation perturbed by general Gaussian and non-Gaussian noise," Statistics & Probability Letters, Elsevier, vol. 184(C).
    17. Coronel-Escamilla, Antonio & Gomez-Aguilar, Jose Francisco & Stamova, Ivanka & Santamaria, Fidel, 2020. "Fractional order controllers increase the robustness of closed-loop deep brain stimulation systems," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    18. Ravi Agarwal & Snezhana Hristova & Donal O’Regan, 2019. "Explicit Solutions of Initial Value Problems for Linear Scalar Riemann-Liouville Fractional Differential Equations With a Constant Delay," Mathematics, MDPI, vol. 8(1), pages 1-14, December.
    19. Zijian Liu & Yaning Wang & Yang Luo & Chunbo Luo, 2022. "A Regularized Graph Neural Network Based on Approximate Fractional Order Gradients," Mathematics, MDPI, vol. 10(8), pages 1-20, April.
    20. Ascione, Giacomo & Leonenko, Nikolai & Pirozzi, Enrica, 2020. "Fractional Erlang queues," Stochastic Processes and their Applications, Elsevier, vol. 130(6), pages 3249-3276.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:192:y:2025:i:c:s0960077925000220. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.