IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v194y2025ics0960077925001675.html
   My bibliography  Save this article

A comprehensive survey of fractional gradient descent methods and their convergence analysis

Author

Listed:
  • Elnady, Sroor M.
  • El-Beltagy, Mohamed
  • Radwan, Ahmed G.
  • Fouda, Mohammed E.

Abstract

Fractional Gradient Descent (FGD) methods extend classical optimization algorithms by integrating fractional calculus, leading to notable improvements in convergence speed, stability, and accuracy. However, recent studies indicate that engineering challenges—such as tensor-based differentiation in deep neural networks—remain partially unresolved, prompting further investigation into the scalability and computational feasibility of FGD. This paper provides a comprehensive review of recent advancements in FGD techniques, focusing on their approximation methods and convergence properties. These methods are systematically categorized based on their strategies to overcome convergence challenges inherent in fractional-order calculations, such as non-locality and long-memory effects. Key techniques examined include modified fractional-order gradients designed to avoid singularities and ensure convergence to the true extremum. Adaptive step-size strategies and variable fractional-order schemes are analyzed, balancing rapid convergence with precise parameter estimation. Additionally, the application of truncation methods is explored to mitigate oscillatory behavior associated with fractional derivatives. By synthesizing convergence analyses from multiple studies, insights are offered into the theoretical foundations of these methods, including proofs of linear convergence. Ultimately, this paper highlights the effectiveness of various FGD approaches in accelerating convergence and enhancing stability. While also acknowledging significant gaps in practical implementations for large-scale engineering tasks, including deep learning. The presented review serves as a resource for researchers and practitioners in the selection of appropriate FGD techniques for different optimization problems.

Suggested Citation

  • Elnady, Sroor M. & El-Beltagy, Mohamed & Radwan, Ahmed G. & Fouda, Mohammed E., 2025. "A comprehensive survey of fractional gradient descent methods and their convergence analysis," Chaos, Solitons & Fractals, Elsevier, vol. 194(C).
  • Handle: RePEc:eee:chsofr:v:194:y:2025:i:c:s0960077925001675
    DOI: 10.1016/j.chaos.2025.116154
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077925001675
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2025.116154?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chaudhary, Naveed Ishtiaq & Khan, Zeshan Aslam & Kiani, Adiqa Kausar & Raja, Muhammad Asif Zahoor & Chaudhary, Iqra Ishtiaq & Pinto, Carla M.A., 2022. "Design of auxiliary model based normalized fractional gradient algorithm for nonlinear output-error systems," Chaos, Solitons & Fractals, Elsevier, vol. 163(C).
    2. Naveed Ishtiaq Chaudhary & Muhammad Asif Zahoor Raja & Zeshan Aslam Khan & Khalid Mehmood Cheema & Ahmad H. Milyani, 2021. "Hierarchical Quasi-Fractional Gradient Descent Method for Parameter Estimation of Nonlinear ARX Systems Using Key Term Separation Principle," Mathematics, MDPI, vol. 9(24), pages 1-14, December.
    3. Han, Xiaohui & Dong, Jianping, 2023. "Applications of fractional gradient descent method with adaptive momentum in BP neural networks," Applied Mathematics and Computation, Elsevier, vol. 448(C).
    4. Xiaojun Zhou & Chunna Zhao & Yaqun Huang, 2023. "A Deep Learning Optimizer Based on Grünwald–Letnikov Fractional Order Definition," Mathematics, MDPI, vol. 11(2), pages 1-15, January.
    5. Liu, Jianjun & Zhai, Rui & Liu, Yuhan & Li, Wenliang & Wang, Bingzhe & Huang, Liyuan, 2021. "A quasi fractional order gradient descent method with adaptive stepsize and its application in system identification," Applied Mathematics and Computation, Elsevier, vol. 393(C).
    6. Zeshan Aslam Khan & Naveed Ishtiaq Chaudhary & Syed Zubair, 2019. "Fractional stochastic gradient descent for recommender systems," Electronic Markets, Springer;IIM University of St. Gallen, vol. 29(2), pages 275-285, June.
    7. Qionglin Fang, 2021. "Estimation of Navigation Mark Floating Based on Fractional-Order Gradient Descent with Momentum for RBF Neural Network," Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-10, April.
    8. Chen, Yuquan & Gao, Qing & Wei, Yiheng & Wang, Yong, 2017. "Study on fractional order gradient methods," Applied Mathematics and Computation, Elsevier, vol. 314(C), pages 310-321.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chaudhary, Naveed Ishtiaq & Khan, Zeshan Aslam & Kiani, Adiqa Kausar & Raja, Muhammad Asif Zahoor & Chaudhary, Iqra Ishtiaq & Pinto, Carla M.A., 2022. "Design of auxiliary model based normalized fractional gradient algorithm for nonlinear output-error systems," Chaos, Solitons & Fractals, Elsevier, vol. 163(C).
    2. Chaudhary, Naveed Ishtiaq & Raja, Muhammad Asif Zahoor & Khan, Zeshan Aslam & Mehmood, Ammara & Shah, Syed Muslim, 2022. "Design of fractional hierarchical gradient descent algorithm for parameter estimation of nonlinear control autoregressive systems," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    3. Han, Xiaohui & Dong, Jianping, 2023. "Applications of fractional gradient descent method with adaptive momentum in BP neural networks," Applied Mathematics and Computation, Elsevier, vol. 448(C).
    4. Harjule, Priyanka & Sharma, Rinki & Kumar, Rajesh, 2025. "Fractional-order gradient approach for optimizing neural networks: A theoretical and empirical analysis," Chaos, Solitons & Fractals, Elsevier, vol. 192(C).
    5. Mao, Jianfeng & Li, Zheng & Yu, Zhiwu & Hu, Lianjun & Khan, Mansoor & Wu, Jun, 2025. "A novel hybrid approach combining PDEM and bayesian optimization deep learning for stochastic vibration analysis in train-track-bridge coupled system," Reliability Engineering and System Safety, Elsevier, vol. 257(PA).
    6. Naveed Ishtiaq Chaudhary & Muhammad Asif Zahoor Raja & Zeshan Aslam Khan & Khalid Mehmood Cheema & Ahmad H. Milyani, 2021. "Hierarchical Quasi-Fractional Gradient Descent Method for Parameter Estimation of Nonlinear ARX Systems Using Key Term Separation Principle," Mathematics, MDPI, vol. 9(24), pages 1-14, December.
    7. Xu, Huan & Xu, Ling & Shen, Shaobo, 2024. "Online identification methods for a class of Hammerstein nonlinear systems using the adaptive particle filtering," Chaos, Solitons & Fractals, Elsevier, vol. 186(C).
    8. Khan, Zeshan Aslam & Chaudhary, Naveed Ishtiaq & Khan, Taimoor Ali & Farooq, Umair & Pinto, Carla M.A. & Raja, Muhammad Asif Zahoor, 2023. "Enhanced fractional prediction scheme for effective matrix factorization in chaotic feedback recommender systems," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    9. Zhang, Hui & Zhou, Shenglong & Li, Geoffrey Ye & Xiu, Naihua & Wang, Yiju, 2025. "A step function based recursion method for 0/1 deep neural networks," Applied Mathematics and Computation, Elsevier, vol. 488(C).
    10. Hassan, Shahzaib Ahmed & Raja, Muhammad Junaid Ali Asif & Chang, Chuan-Yu & Shu, Chi-Min & Shoaib, Muhammad & Kiani, Adiqa Kausar & Raja, Muhammad Asif Zahoor, 2024. "Nonlinear chaotic Lorenz-Lü-Chen fractional order dynamics: A novel machine learning expedition with deep autoregressive exogenous neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 189(P1).
    11. Wang, Ziyun & Wang, Xianzhe & Wang, Yan, 2024. "Orthotope-search-expansion-based extended zonotopic Kalman filter design for a discrete-time linear parameter-varying system with a dual-noise term," Applied Mathematics and Computation, Elsevier, vol. 474(C).
    12. Yunqi Jiang & Huaqing Zhang & Kai Zhang & Jian Wang & Shiti Cui & Jianfa Han & Liming Zhang & Jun Yao, 2022. "Reservoir Characterization and Productivity Forecast Based on Knowledge Interaction Neural Network," Mathematics, MDPI, vol. 10(9), pages 1-22, May.
    13. Faisal Altaf & Ching-Lung Chang & Naveed Ishtiaq Chaudhary & Muhammad Asif Zahoor Raja & Khalid Mehmood Cheema & Chi-Min Shu & Ahmad H. Milyani, 2022. "Adaptive Evolutionary Computation for Nonlinear Hammerstein Control Autoregressive Systems with Key Term Separation Principle," Mathematics, MDPI, vol. 10(6), pages 1-20, March.
    14. Ali, Muhammad Aown & Chaudhary, Naveed Ishtiaq & Khan, Taimoor Ali & Mao, Wei-Lung & Lin, Chien-Chou & Raja, Muhammad Asif Zahoor, 2024. "Design of key term separated identification model for fractional input nonlinear output error systems: Auxiliary model based Runge Kutta optimization algorithm," Chaos, Solitons & Fractals, Elsevier, vol. 189(P1).
    15. Khan, Zeshan Aslam & Chaudhary, Naveed Ishtiaq & Raja, Muhammad Asif Zahoor, 2022. "Generalized fractional strategy for recommender systems with chaotic ratings behavior," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    16. Mukhtar, Roshana & Chang, Chuan-Yu & Raja, Muhammad Asif Zahoor & Chaudhary, Naveed Ishtiaq & Shu, Chi-Min, 2024. "Novel nonlinear fractional order Parkinson's disease model for brain electrical activity rhythms: Intelligent adaptive Bayesian networks," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    17. Khizer Mehmood & Naveed Ishtiaq Chaudhary & Zeshan Aslam Khan & Khalid Mehmood Cheema & Muhammad Asif Zahoor Raja & Ahmad H. Milyani & Abdullah Ahmed Azhari, 2022. "Nonlinear Hammerstein System Identification: A Novel Application of Marine Predator Optimization Using the Key Term Separation Technique," Mathematics, MDPI, vol. 10(22), pages 1-22, November.
    18. Mukhtar, Roshana & Chang, Chuan-Yu & Raja, Muhammad Asif Zahoor & Chaudhary, Naveed Ishtiaq & Raja, Muhammad Junaid Ali Asif & Shu, Chi-Min, 2025. "Design of fractional innate immune response to nonlinear Parkinson's disease model with therapeutic intervention: Intelligent machine predictive exogenous networks," Chaos, Solitons & Fractals, Elsevier, vol. 191(C).
    19. Yin Zhang & Haider Abbas & Yi Sun, 2019. "Smart e-commerce integration with recommender systems," Electronic Markets, Springer;IIM University of St. Gallen, vol. 29(2), pages 219-220, June.
    20. Mehmood, Khizer & Chaudhary, Naveed Ishtiaq & Khan, Zeshan Aslam & Cheema, Khalid Mehmood & Raja, Muhammad Asif Zahoor & Shu, Chi-Min, 2023. "Novel knacks of chaotic maps with Archimedes optimization paradigm for nonlinear ARX model identification with key term separation," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:194:y:2025:i:c:s0960077925001675. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.