IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v448y2023ics0096300323001133.html
   My bibliography  Save this article

Applications of fractional gradient descent method with adaptive momentum in BP neural networks

Author

Listed:
  • Han, Xiaohui
  • Dong, Jianping

Abstract

A novel fractional gradient descent method with adaptive momentum is presented in this paper to improve the convergence speed and stability for BP neural network training. The fractional Grünwald-Letnikov derivative is used for the fractional gradient. The coefficient of the momentum term is set as an adaptive variable, depending on the fractional gradient of the current step and the weight change of the previous step. We give a detailed convergence proof of the proposed method. Experiments on MNIST data sets and XOR problem demonstrate that the fractional gradient descent method with adaptive momentum term can effectively improve convergence speed, maintain stability of BP neural network training, help escape from local minimum points, and enlarge the selection range of the learning rate.

Suggested Citation

  • Han, Xiaohui & Dong, Jianping, 2023. "Applications of fractional gradient descent method with adaptive momentum in BP neural networks," Applied Mathematics and Computation, Elsevier, vol. 448(C).
  • Handle: RePEc:eee:apmaco:v:448:y:2023:i:c:s0096300323001133
    DOI: 10.1016/j.amc.2023.127944
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300323001133
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2023.127944?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Jianjun & Zhai, Rui & Liu, Yuhan & Li, Wenliang & Wang, Bingzhe & Huang, Liyuan, 2021. "A quasi fractional order gradient descent method with adaptive stepsize and its application in system identification," Applied Mathematics and Computation, Elsevier, vol. 393(C).
    2. Lingge Li & Andrew Holbrook & Babak Shahbaba & Pierre Baldi, 2019. "Neural network gradient Hamiltonian Monte Carlo," Computational Statistics, Springer, vol. 34(1), pages 281-299, March.
    3. Blanka Horvath & Aitor Muguruza & Mehdi Tomas, 2021. "Deep learning volatility: a deep neural network perspective on pricing and calibration in (rough) volatility models," Quantitative Finance, Taylor & Francis Journals, vol. 21(1), pages 11-27, January.
    4. Chen, Yuquan & Gao, Qing & Wei, Yiheng & Wang, Yong, 2017. "Study on fractional order gradient methods," Applied Mathematics and Computation, Elsevier, vol. 314(C), pages 310-321.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chaudhary, Naveed Ishtiaq & Raja, Muhammad Asif Zahoor & Khan, Zeshan Aslam & Mehmood, Ammara & Shah, Syed Muslim, 2022. "Design of fractional hierarchical gradient descent algorithm for parameter estimation of nonlinear control autoregressive systems," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    2. Qinwen Zhu & Gregoire Loeper & Wen Chen & Nicolas Langrené, 2021. "Markovian approximation of the rough Bergomi model for Monte Carlo option pricing," Post-Print hal-02910724, HAL.
    3. Eduardo Abi Jaber & Camille Illand & Shaun & Li, 2022. "Joint SPX-VIX calibration with Gaussian polynomial volatility models: deep pricing with quantization hints," Papers 2212.08297, arXiv.org.
    4. Mathieu Rosenbaum & Jianfei Zhang, 2021. "Deep calibration of the quadratic rough Heston model," Papers 2107.01611, arXiv.org, revised May 2022.
    5. Abir Sridi & Paul Bilokon, 2023. "Applying Deep Learning to Calibrate Stochastic Volatility Models," Papers 2309.07843, arXiv.org, revised Sep 2023.
    6. Anthony Coache & Sebastian Jaimungal, 2021. "Reinforcement Learning with Dynamic Convex Risk Measures," Papers 2112.13414, arXiv.org, revised Nov 2022.
    7. Andrew Na & Meixin Zhang & Justin Wan, 2023. "Computing Volatility Surfaces using Generative Adversarial Networks with Minimal Arbitrage Violations," Papers 2304.13128, arXiv.org, revised Dec 2023.
    8. Mei-Qi, Wang & Wen-Li, Ma & En-Li, Chen & Yu-Jian, Chang & Cui-Yan, Wang, 2022. "Principal resonance analysis of piecewise nonlinear oscillator with fractional calculus," Chaos, Solitons & Fractals, Elsevier, vol. 154(C).
    9. Ofelia Bonesini & Giorgia Callegaro & Martino Grasselli & Gilles Pag`es, 2023. "From elephant to goldfish (and back): memory in stochastic Volterra processes," Papers 2306.02708, arXiv.org, revised Sep 2023.
    10. Qinwen Zhu & Grégoire Loeper & Wen Chen & Nicolas Langrené, 2021. "Markovian Approximation of the Rough Bergomi Model for Monte Carlo Option Pricing," Mathematics, MDPI, vol. 9(5), pages 1-21, March.
    11. Joel P. Villarino & 'Alvaro Leitao & Jos'e A. Garc'ia-Rodr'iguez, 2022. "Boundary-safe PINNs extension: Application to non-linear parabolic PDEs in counterparty credit risk," Papers 2210.02175, arXiv.org.
    12. Eduardo Abi Jaber & Camille Illand & Shaun Xiaoyuan Li, 2022. "Joint SPX-VIX calibration with Gaussian polynomial volatility models: deep pricing with quantization hints," Working Papers hal-03902513, HAL.
    13. Valentin Tissot-Daguette, 2021. "Projection of Functionals and Fast Pricing of Exotic Options," Papers 2111.03713, arXiv.org, revised Apr 2022.
    14. Jay Cao & Jacky Chen & John Hull & Zissis Poulos, 2021. "Deep Learning for Exotic Option Valuation," Papers 2103.12551, arXiv.org, revised Sep 2021.
    15. Patrick Büchel & Michael Kratochwil & Maximilian Nagl & Daniel Rösch, 2022. "Deep calibration of financial models: turning theory into practice," Review of Derivatives Research, Springer, vol. 25(2), pages 109-136, July.
    16. Eduardo Abi Jaber & Shaun & Li, 2024. "Volatility models in practice: Rough, Path-dependent or Markovian?," Papers 2401.03345, arXiv.org.
    17. Naveed Ishtiaq Chaudhary & Muhammad Asif Zahoor Raja & Zeshan Aslam Khan & Khalid Mehmood Cheema & Ahmad H. Milyani, 2021. "Hierarchical Quasi-Fractional Gradient Descent Method for Parameter Estimation of Nonlinear ARX Systems Using Key Term Separation Principle," Mathematics, MDPI, vol. 9(24), pages 1-14, December.
    18. Jiří Witzany & Milan Fičura, 2023. "Machine Learning Applications to Valuation of Options on Non-liquid Markets," FFA Working Papers 5.001, Prague University of Economics and Business, revised 24 Jan 2023.
    19. Chaudhary, Naveed Ishtiaq & Khan, Zeshan Aslam & Kiani, Adiqa Kausar & Raja, Muhammad Asif Zahoor & Chaudhary, Iqra Ishtiaq & Pinto, Carla M.A., 2022. "Design of auxiliary model based normalized fractional gradient algorithm for nonlinear output-error systems," Chaos, Solitons & Fractals, Elsevier, vol. 163(C).
    20. Mark Kiermayer & Christian Wei{ss}, 2022. "Neural calibration of hidden inhomogeneous Markov chains -- Information decompression in life insurance," Papers 2201.02397, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:448:y:2023:i:c:s0096300323001133. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.