IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v13y2025i13p2068-d1684701.html
   My bibliography  Save this article

Fractional Optimizers for LSTM Networks in Financial Time Series Forecasting

Author

Listed:
  • Mustapha Ez-zaiym

    (Mathematics and Data Science Laboratory, Taza Multidisciplinary Faculty, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco)

  • Yassine Senhaji

    (Mathematics and Data Science Laboratory, Taza Multidisciplinary Faculty, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco)

  • Meriem Rachid

    (Faculty of Law, Economics and Social Sciences—LRMEF Fez, Sidi Mohamed Ben Abdellah University, Fez 30060, Morocco)

  • Karim El Moutaouakil

    (Mathematics and Data Science Laboratory, Taza Multidisciplinary Faculty, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco)

  • Vasile Palade

    (Centre for Computational Science and Mathematical Modelling, Coventry University, Priory Road, Coventry CV1 5FB, UK)

Abstract

This study investigates the theoretical foundations and practical advantages of fractional-order optimization in computational machine learning, with a particular focus on stock price forecasting using long short-term memory (LSTM) networks. We extend several widely used optimization algorithms—including Adam, RMSprop, SGD, Adadelta, FTRL, Adamax, and Adagrad—by incorporating fractional derivatives into their update rules. This novel approach leverages the memory-retentive properties of fractional calculus to improve convergence behavior and model efficiency. Our experimental analysis evaluates the performance of fractional-order optimizers on LSTM networks tasked with forecasting stock prices for major companies such as AAPL, MSFT, GOOGL, AMZN, META, NVDA, JPM, V, and UNH. Considering four metrics (Sharpe ratio, directional accuracy, cumulative return, and MSE), the results show that fractional orders can significantly enhance prediction accuracy for moderately volatile stocks, especially among lower-cap assets. However, for highly volatile stocks, performance tends to degrade with higher fractional orders, leading to erratic and inconsistent forecasts. In addition, fractional optimizers with short-memory truncation offer a favorable trade-off between computational efficiency and modeling accuracy in medium-frequency financial applications. Their enhanced capacity to capture long-range dependencies and robust performance in noisy environments further justify their adoption in such contexts. These results suggest that fractional-order optimization holds significant promise for improving financial forecasting models—provided that the fractional parameters are carefully tuned to balance memory effects with system stability.

Suggested Citation

  • Mustapha Ez-zaiym & Yassine Senhaji & Meriem Rachid & Karim El Moutaouakil & Vasile Palade, 2025. "Fractional Optimizers for LSTM Networks in Financial Time Series Forecasting," Mathematics, MDPI, vol. 13(13), pages 1-44, June.
  • Handle: RePEc:gam:jmathe:v:13:y:2025:i:13:p:2068-:d:1684701
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/13/13/2068/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/13/13/2068/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    2. Fischer, Thomas & Krauss, Christopher, 2018. "Deep learning with long short-term memory networks for financial market predictions," European Journal of Operational Research, Elsevier, vol. 270(2), pages 654-669.
    3. Elnady, Sroor M. & El-Beltagy, Mohamed & Radwan, Ahmed G. & Fouda, Mohammed E., 2025. "A comprehensive survey of fractional gradient descent methods and their convergence analysis," Chaos, Solitons & Fractals, Elsevier, vol. 194(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kentaro Imajo & Kentaro Minami & Katsuya Ito & Kei Nakagawa, 2020. "Deep Portfolio Optimization via Distributional Prediction of Residual Factors," Papers 2012.07245, arXiv.org.
    2. Bartosz Bieganowski & Robert Ślepaczuk, 2024. "Supervised Autoencoder MLP for Financial Time Series Forecasting," Working Papers 2024-03, Faculty of Economic Sciences, University of Warsaw.
    3. Alexander Jakob Dautel & Wolfgang Karl Härdle & Stefan Lessmann & Hsin-Vonn Seow, 2020. "Forex exchange rate forecasting using deep recurrent neural networks," Digital Finance, Springer, vol. 2(1), pages 69-96, September.
    4. Ehsan Hoseinzade & Saman Haratizadeh & Arash Khoeini, 2019. "U-CNNpred: A Universal CNN-based Predictor for Stock Markets," Papers 1911.12540, arXiv.org.
    5. Saâdaoui, Foued & Rabbouch, Hana, 2024. "Financial forecasting improvement with LSTM-ARFIMA hybrid models and non-Gaussian distributions," Technological Forecasting and Social Change, Elsevier, vol. 206(C).
    6. Jing Hao & Feng He & Feng Ma & Shibo Zhang & Xiaotao Zhang, 2025. "Machine learning vs deep learning in stock market investment: an international evidence," Annals of Operations Research, Springer, vol. 348(1), pages 93-115, May.
    7. Fabian Waldow & Matthias Schnaubelt & Christopher Krauss & Thomas Günter Fischer, 2021. "Machine Learning in Futures Markets," JRFM, MDPI, vol. 14(3), pages 1-14, March.
    8. Hairong Cui & Xurui Wang & Xiaojun Chu, 2025. "Stock Returns Prediction Based on Implied Volatility Spread Under Network Perspective," Computational Economics, Springer;Society for Computational Economics, vol. 65(5), pages 2829-2852, May.
    9. Meet Satishbhai Sonani & Atta Badii & Armin Moin, 2025. "Stock Price Prediction Using a Hybrid LSTM-GNN Model: Integrating Time-Series and Graph-Based Analysis," Papers 2502.15813, arXiv.org.
    10. Green, Lawrence & Sung, Ming-Chien & Ma, Tiejun & Johnson, Johnnie E. V., 2019. "To what extent can new web-based technology improve forecasts? Assessing the economic value of information derived from Virtual Globes and its rate of diffusion in a financial market," European Journal of Operational Research, Elsevier, vol. 278(1), pages 226-239.
    11. Keer Yang & Guanqun Zhang & Chuan Bi & Qiang Guan & Hailu Xu & Shuai Xu, 2023. "Improving CNN-base Stock Trading By Considering Data Heterogeneity and Burst," Papers 2303.09407, arXiv.org.
    12. Guangxi Cao & Meijun Ling & Jingwen Wei & Chen Chen, 2025. "Dynamic Market Behavior and Price Prediction in Cryptocurrency: An Analysis Based on Asymmetric Herding Effects and LSTM," Computational Economics, Springer;Society for Computational Economics, vol. 65(6), pages 3325-3360, June.
    13. Schnaubelt, Matthias & Fischer, Thomas G. & Krauss, Christopher, 2020. "Separating the signal from the noise – Financial machine learning for Twitter," Journal of Economic Dynamics and Control, Elsevier, vol. 114(C).
    14. Yoonjae Noh & Jong-Min Kim & Soongoo Hong & Sangjin Kim, 2023. "Deep Learning Model for Multivariate High-Frequency Time-Series Data: Financial Market Index Prediction," Mathematics, MDPI, vol. 11(16), pages 1-18, August.
    15. Jinho Lee & Raehyun Kim & Yookyung Koh & Jaewoo Kang, 2019. "Global Stock Market Prediction Based on Stock Chart Images Using Deep Q-Network," Papers 1902.10948, arXiv.org.
    16. Thomas Günter Fischer & Christopher Krauss & Alexander Deinert, 2019. "Statistical Arbitrage in Cryptocurrency Markets," JRFM, MDPI, vol. 12(1), pages 1-15, February.
    17. Bartosz Bieganowski & Robert 'Slepaczuk, 2024. "Supervised Autoencoders with Fractionally Differentiated Features and Triple Barrier Labelling Enhance Predictions on Noisy Data," Papers 2411.12753, arXiv.org, revised Nov 2024.
    18. Amin Aminimehr & Ali Raoofi & Akbar Aminimehr & Amirhossein Aminimehr, 2022. "A Comprehensive Study of Market Prediction from Efficient Market Hypothesis up to Late Intelligent Market Prediction Approaches," Computational Economics, Springer;Society for Computational Economics, vol. 60(2), pages 781-815, August.
    19. Ben Moews, 2023. "On random number generators and practical market efficiency," Papers 2305.17419, arXiv.org, revised Jul 2023.
    20. Flori, Andrea & Regoli, Daniele, 2021. "Revealing Pairs-trading opportunities with long short-term memory networks," European Journal of Operational Research, Elsevier, vol. 295(2), pages 772-791.

    More about this item

    Keywords

    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:13:p:2068-:d:1684701. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.