IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v157y2022ics0960077922001709.html
   My bibliography  Save this article

Solvability of Atangana-Baleanu-Riemann (ABR) fractional stochastic differential equations driven by Rosenblatt process via measure of noncompactness

Author

Listed:
  • Balasubramaniam, P.

Abstract

This paper is concerned with the solvability of ABR fractional stochastic differential equations (FSDEs) driven by Rosenblatt process with nonlocal conditions. Results are established by using the concept of fractional theory, semigroup, the Mönch fixed point theorem and measure of noncompactness (MNC) in stochastic settings. The obtained theoretical results are validated through an example.

Suggested Citation

  • Balasubramaniam, P., 2022. "Solvability of Atangana-Baleanu-Riemann (ABR) fractional stochastic differential equations driven by Rosenblatt process via measure of noncompactness," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
  • Handle: RePEc:eee:chsofr:v:157:y:2022:i:c:s0960077922001709
    DOI: 10.1016/j.chaos.2022.111960
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077922001709
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2022.111960?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hu, Yaozhong & Nualart, David & Song, Xiaoming, 2008. "A singular stochastic differential equation driven by fractional Brownian motion," Statistics & Probability Letters, Elsevier, vol. 78(14), pages 2075-2085, October.
    2. Aimene, D. & Baleanu, D. & Seba, D., 2019. "Controllability of semilinear impulsive Atangana-Baleanu fractional differential equations with delay," Chaos, Solitons & Fractals, Elsevier, vol. 128(C), pages 51-57.
    3. Balasubramaniam, P., 2021. "Controllability of semilinear noninstantaneous impulsive ABC neutral fractional differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    4. Atangana, Abdon & Koca, Ilknur, 2016. "Chaos in a simple nonlinear system with Atangana–Baleanu derivatives with fractional order," Chaos, Solitons & Fractals, Elsevier, vol. 89(C), pages 447-454.
    5. Wang, JinRong & Ibrahim, Ahmed Gamal & Fečkan, Michal, 2015. "Nonlocal impulsive fractional differential inclusions with fractional sectorial operators on Banach spaces," Applied Mathematics and Computation, Elsevier, vol. 257(C), pages 103-118.
    6. Kumar, Ashish & Pandey, Dwijendra N., 2020. "Existence of mild solution of Atangana–Baleanu fractional differential equations with non-instantaneous impulses and with non-local conditions," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    7. Bas, Erdal & Ozarslan, Ramazan, 2018. "Real world applications of fractional models by Atangana–Baleanu fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 116(C), pages 121-125.
    8. Ludwik Byszewski & Haydar Akca, 1997. "On a mild solution of a semilinear functional-differential evolution nonlocal problem," International Journal of Stochastic Analysis, Hindawi, vol. 10, pages 1-7, January.
    9. Jean-Daniel Djida & Gisèle Mophou & Iván Area, 2019. "Optimal Control of Diffusion Equation with Fractional Time Derivative with Nonlocal and Nonsingular Mittag-Leffler Kernel," Journal of Optimization Theory and Applications, Springer, vol. 182(2), pages 540-557, August.
    10. Changpin Li & Deliang Qian & YangQuan Chen, 2011. "On Riemann-Liouville and Caputo Derivatives," Discrete Dynamics in Nature and Society, Hindawi, vol. 2011, pages 1-15, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Upadhyay, Anjali & Kumar, Surendra, 2023. "The exponential nature and solvability of stochastic multi-term fractional differential inclusions with Clarke’s subdifferential," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Balasubramaniam, P., 2021. "Controllability of semilinear noninstantaneous impulsive ABC neutral fractional differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    2. Dineshkumar, C. & Udhayakumar, R. & Vijayakumar, V. & Nisar, Kottakkaran Sooppy & Shukla, Anurag, 2022. "A note concerning to approximate controllability of Atangana-Baleanu fractional neutral stochastic systems with infinite delay," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    3. Aimene, D. & Baleanu, D. & Seba, D., 2019. "Controllability of semilinear impulsive Atangana-Baleanu fractional differential equations with delay," Chaos, Solitons & Fractals, Elsevier, vol. 128(C), pages 51-57.
    4. Mallika Arjunan, M. & Hamiaz, A. & Kavitha, V., 2021. "Existence results for Atangana-Baleanu fractional neutral integro-differential systems with infinite delay through sectorial operators," Chaos, Solitons & Fractals, Elsevier, vol. 149(C).
    5. Bedi, Pallavi & Kumar, Anoop & Khan, Aziz, 2021. "Controllability of neutral impulsive fractional differential equations with Atangana-Baleanu-Caputo derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    6. Mallika Arjunan, M. & Abdeljawad, Thabet & Kavitha, V. & Yousef, Ali, 2021. "On a new class of Atangana-Baleanu fractional Volterra-Fredholm integro-differential inclusions with non-instantaneous impulses," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    7. Jiale Sheng & Wei Jiang & Denghao Pang & Sen Wang, 2020. "Controllability of Nonlinear Fractional Dynamical Systems with a Mittag–Leffler Kernel," Mathematics, MDPI, vol. 8(12), pages 1-10, December.
    8. Zeid, Samaneh Soradi, 2019. "Approximation methods for solving fractional equations," Chaos, Solitons & Fractals, Elsevier, vol. 125(C), pages 171-193.
    9. Ghanbari, Behzad & Kumar, Sunil & Kumar, Ranbir, 2020. "A study of behaviour for immune and tumor cells in immunogenetic tumour model with non-singular fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    10. Kumar, Ashish & Pandey, Dwijendra N., 2020. "Existence of mild solution of Atangana–Baleanu fractional differential equations with non-instantaneous impulses and with non-local conditions," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    11. Debbouche, Amar & Antonov, Valery, 2017. "Approximate controllability of semilinear Hilfer fractional differential inclusions with impulsive control inclusion conditions in Banach spaces," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 140-148.
    12. Giacomo Ascione & Enrica Pirozzi, 2020. "On the Construction of Some Fractional Stochastic Gompertz Models," Mathematics, MDPI, vol. 8(1), pages 1-24, January.
    13. Lihong Guo, 2024. "Renormalization Group Method for a Stochastic Differential Equation with Multiplicative Fractional White Noise," Mathematics, MDPI, vol. 12(3), pages 1-20, January.
    14. El-Dessoky Ahmed, M.M. & Altaf Khan, Muhammad, 2020. "Modeling and analysis of the polluted lakes system with various fractional approaches," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    15. Suganya, S. & Mallika Arjunan, M. & Trujillo, J.J., 2015. "Existence results for an impulsive fractional integro-differential equation with state-dependent delay," Applied Mathematics and Computation, Elsevier, vol. 266(C), pages 54-69.
    16. Owolabi, Kolade M. & Atangana, Abdon, 2017. "Numerical approximation of nonlinear fractional parabolic differential equations with Caputo–Fabrizio derivative in Riemann–Liouville sense," Chaos, Solitons & Fractals, Elsevier, vol. 99(C), pages 171-179.
    17. Ravichandran, C. & Logeswari, K. & Panda, Sumati Kumari & Nisar, Kottakkaran Sooppy, 2020. "On new approach of fractional derivative by Mittag-Leffler kernel to neutral integro-differential systems with impulsive conditions," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    18. Wang, JinRong & Fĕckan, Michal & Zhou, Yong, 2017. "Center stable manifold for planar fractional damped equations," Applied Mathematics and Computation, Elsevier, vol. 296(C), pages 257-269.
    19. John-Fritz Thony & Jean Vaillant, 2022. "Parameter Estimation for a Fractional Black–Scholes Model with Jumps from Discrete Time Observations," Mathematics, MDPI, vol. 10(22), pages 1-17, November.
    20. Lin, Zeng & Wang, JinRong & Wei, Wei, 2015. "Fractional differential equation models with pulses and criterion for pest management," Applied Mathematics and Computation, Elsevier, vol. 257(C), pages 398-408.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:157:y:2022:i:c:s0960077922001709. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.