IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v191y2025ics0960077924014115.html
   My bibliography  Save this article

Unraveling the transmission mechanism of animal disease: Insight from a stochastic eco-epidemiological model driven by Lévy jumps

Author

Listed:
  • Zhao, Zhuoying
  • Zhang, Xinhong

Abstract

In order to study the transmission mechanism of animal disease, thereby better controlling it and protecting human health, this work deals with a stochastic eco-epidemiological model, in which the infectious force of animal disease is described by the half-saturated incidence rate. And we attempt to introduce white noises and Lévy jumps as environmental perturbances in our proposed model. Before analyzing the dynamical characteristics of the stochastic model, the article firstly proves that there is a unique global positive solution. Then, we explore the thresholds to make the animal disease extinct from the perspective of environmental perturbances, which provide valuable suggestions for controlling the outbreak of animal disease. Furthermore, we analyze the long-term dynamical behavior of the stochastic model by establishing sufficient condition for the existence of a stationary distribution, which is of great significance for maintaining the ecological balance. Finally, we verify the theoretical results by numerical simulations and explore the impacts of white noises and Lévy jumps on the eco-epidemiological model, contributing to a better understanding of the stochastic model’s dynamical behaviors and the development of effective animal disease control strategies.

Suggested Citation

  • Zhao, Zhuoying & Zhang, Xinhong, 2025. "Unraveling the transmission mechanism of animal disease: Insight from a stochastic eco-epidemiological model driven by Lévy jumps," Chaos, Solitons & Fractals, Elsevier, vol. 191(C).
  • Handle: RePEc:eee:chsofr:v:191:y:2025:i:c:s0960077924014115
    DOI: 10.1016/j.chaos.2024.115859
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924014115
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.115859?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Meng, Xinzhu & Li, Fei & Gao, Shujing, 2018. "Global analysis and numerical simulations of a novel stochastic eco-epidemiological model with time delay," Applied Mathematics and Computation, Elsevier, vol. 339(C), pages 701-726.
    2. Zhou, Yanli & Zhang, Weiguo, 2016. "Threshold of a stochastic SIR epidemic model with Lévy jumps," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 446(C), pages 204-216.
    3. Kumar, Ajay & Kumar, Sunil, 2022. "A study on eco-epidemiological model with fractional operators," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    4. Zhang, Xinhong & Jiang, Daqing & Hayat, Tasawar & Ahmad, Bashir, 2017. "Dynamics of a stochastic SIS model with double epidemic diseases driven by Lévy jumps," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 767-777.
    5. Bagheri, Safieh & Akrami, Mohammad Hossein & Loghmani, Ghasem Barid & Heydari, Mohammad, 2024. "Traveling wave in an eco-epidemiological model with diffusion and convex incidence rate: Dynamics and numerical simulation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 216(C), pages 347-366.
    6. Selvan, T. Tamil & Kumar, M., 2024. "Stationary distribution of a double epidemic stochastic model driven by saturated incidence rates," Applied Mathematics and Computation, Elsevier, vol. 474(C).
    7. Mao, Xuerong & Marion, Glenn & Renshaw, Eric, 2002. "Environmental Brownian noise suppresses explosions in population dynamics," Stochastic Processes and their Applications, Elsevier, vol. 97(1), pages 95-110, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Baoquan & Jiang, Daqing & Han, Bingtao & Hayat, Tasawar, 2022. "Threshold dynamics and density function of a stochastic epidemic model with media coverage and mean-reverting Ornstein–Uhlenbeck process," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 196(C), pages 15-44.
    2. Bao, Kangbo & Zhang, Qimin & Rong, Libin & Li, Xining, 2019. "Dynamics of an imprecise SIRS model with Lévy jumps," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 520(C), pages 489-506.
    3. Chen, Xingzhi & Xu, Xin & Tian, Baodan & Li, Dong & Yang, Dan, 2022. "Dynamics of a stochastic delayed chemostat model with nutrient storage and Lévy jumps," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    4. Fan, Kuangang & Zhang, Yan & Gao, Shujing & Chen, Shihua, 2020. "A delayed vaccinated epidemic model with nonlinear incidence rate and Lévy jumps," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 544(C).
    5. Zhou, Baoquan & Jiang, Daqing & Dai, Yucong & Hayat, Tasawar & Alsaedi, Ahmed, 2021. "Stationary distribution and probability density function of a stochastic SVIS epidemic model with standard incidence and vaccination strategies," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    6. Đorđević, J. & Papić, I. & Šuvak, N., 2021. "A two diffusion stochastic model for the spread of the new corona virus SARS-CoV-2," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    7. Ge, Qing & Ji, Guilin & Xu, Jiabo & Fan, Xiaolin, 2016. "Extinction and persistence of a stochastic nonlinear SIS epidemic model with jumps," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 1120-1127.
    8. Cheng, Yan & Li, Mingtao & Zhang, Fumin, 2019. "A dynamics stochastic model with HIV infection of CD4+ T-cells driven by Lévy noise," Chaos, Solitons & Fractals, Elsevier, vol. 129(C), pages 62-70.
    9. Tingting Ma & Xinzhu Meng & Zhengbo Chang, 2019. "Dynamics and Optimal Harvesting Control for a Stochastic One-Predator-Two-Prey Time Delay System with Jumps," Complexity, Hindawi, vol. 2019, pages 1-19, March.
    10. Gao, Miaomiao & Jiang, Daqing & Hayat, Tasawar & Alsaedi, Ahmed, 2019. "Threshold behavior of a stochastic Lotka–Volterra food chain chemostat model with jumps," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 191-203.
    11. Wang, Lei & Teng, Zhidong & Ji, Chunyan & Feng, Xiaomei & Wang, Kai, 2019. "Dynamical behaviors of a stochastic malaria model: A case study for Yunnan, China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 435-454.
    12. Misra, A.K. & Tripathi, Amita, 2018. "A stochastic model for making artificial rain using aerosols," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 1113-1126.
    13. Tong, Jinying & Zhang, Zhenzhong & Bao, Jianhai, 2013. "The stationary distribution of the facultative population model with a degenerate noise," Statistics & Probability Letters, Elsevier, vol. 83(2), pages 655-664.
    14. Huang, Zaitang & Cao, Junfei, 2018. "Ergodicity and bifurcations for stochastic logistic equation with non-Gaussian Lévy noise," Applied Mathematics and Computation, Elsevier, vol. 330(C), pages 1-10.
    15. Liu, Qun & Jiang, Daqing & Hayat, Tasawar & Alsaedi, Ahmed & Ahmad, Bashir, 2020. "A stochastic SIRS epidemic model with logistic growth and general nonlinear incidence rate," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
    16. Shi, Zhenfeng & Zhang, Xinhong & Jiang, Daqing, 2019. "Dynamics of an avian influenza model with half-saturated incidence," Applied Mathematics and Computation, Elsevier, vol. 355(C), pages 399-416.
    17. Lei Fu & Hongwei Yang, 2019. "An Application of (3+1)-Dimensional Time-Space Fractional ZK Model to Analyze the Complex Dust Acoustic Waves," Complexity, Hindawi, vol. 2019, pages 1-15, August.
    18. Liu, Meng & Wang, Ke, 2009. "Survival analysis of stochastic single-species population models in polluted environments," Ecological Modelling, Elsevier, vol. 220(9), pages 1347-1357.
    19. Yu, Jingyi & Liu, Meng, 2017. "Stationary distribution and ergodicity of a stochastic food-chain model with Lévy jumps," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 482(C), pages 14-28.
    20. Qi, Kai & Jiang, Daqing & Hayat, Tasawar & Alsaedi, Ahmed, 2021. "Virus dynamic behavior of a stochastic HIV/AIDS infection model including two kinds of target cell infections and CTL immune responses," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 188(C), pages 548-570.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:191:y:2025:i:c:s0960077924014115. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.