IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v190y2025ics0960077924013031.html
   My bibliography  Save this article

Synchronization resilience of coupled fluctuating-damping oscillators in small-world weighted complex networks

Author

Listed:
  • Zhang, Ruoqi
  • Lin, Lifeng
  • Wang, Huiqi

Abstract

The mechanisms of synergy in complex networks have garnered significant attention across scientific disciplines. In this paper, we present a model of coupled oscillators with damping fluctuations within a small-world weighted complex network. We analyze the system’s asymptotic synchronization to derive conditions for asymptotic stability and evaluate the steady-state response. Our numerical simulations highlight the substantial impact of network weight heterogeneity and scale on asymptotic synchronization. We also examine asymptotic synchronization resilience under various removal strategies, revealing that increased noise intensity and lower switching rates reduce resilience. Notably, the removal of strong links poses the greatest vulnerability, while weak links have minimal impact. Interestingly, enhancing weight heterogeneity and scale can improve resilience in certain cases. Our results further show that heterogeneity accelerates synchronization speed, indicating a non-monotonic relationship with network scale. Ultimately, we confirm our theoretical findings and reveal intriguing generalized stochastic resonance (GSR) phenomena.

Suggested Citation

  • Zhang, Ruoqi & Lin, Lifeng & Wang, Huiqi, 2025. "Synchronization resilience of coupled fluctuating-damping oscillators in small-world weighted complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 190(C).
  • Handle: RePEc:eee:chsofr:v:190:y:2025:i:c:s0960077924013031
    DOI: 10.1016/j.chaos.2024.115751
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924013031
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.115751?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:190:y:2025:i:c:s0960077924013031. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.