IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v166y2023ics096007792201147x.html
   My bibliography  Save this article

Taxonomy of cohesion coefficients for weighted and directed multilayer networks

Author

Listed:
  • Bartesaghi, Paolo
  • Clemente, Gian Paolo
  • Grassi, Rosanna

Abstract

Clustering and closure coefficients are among the most widely applied indicators in the description of the topological structure of a network. Many distinct definitions have been proposed over time, particularly in the case of weighted networks, where the choice of the weight attributed to the triangles is a crucial aspect. In the present work, in the framework of weighted directed multilayer networks, we extend the classical clustering and closure coefficients through the introduction of the clumping coefficient, which generalizes them to incomplete triangles of any type. We then organize the class of these coefficients in a systematic taxonomy in the more general context of weighted directed multilayer networks. Such cohesion coefficients have also been adapted to the different scales that characterize a multilayer network, in order to grasp their structure from different perspectives. We also show how the tensor formalism allows incorporating the new definitions, as well as all those existing in the literature, in a single unified writing, in such a way that a suitable choice of the involved adjacency tensors allows obtaining each of them. Finally, through some applications to simulated networks, we show the effectiveness of the proposed coefficients in capturing different peculiarities of the network structure on different scales.

Suggested Citation

  • Bartesaghi, Paolo & Clemente, Gian Paolo & Grassi, Rosanna, 2023. "Taxonomy of cohesion coefficients for weighted and directed multilayer networks," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
  • Handle: RePEc:eee:chsofr:v:166:y:2023:i:c:s096007792201147x
    DOI: 10.1016/j.chaos.2022.112968
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096007792201147X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2022.112968?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Duncan J. Watts & Steven H. Strogatz, 1998. "Collective dynamics of ‘small-world’ networks," Nature, Nature, vol. 393(6684), pages 440-442, June.
    2. Clemente, G.P. & Grassi, R., 2018. "Directed clustering in weighted networks: A new perspective," Chaos, Solitons & Fractals, Elsevier, vol. 107(C), pages 26-38.
    3. Gian Paolo Clemente & Marco Fattore & Rosanna Grassi, 2018. "Structural comparisons of networks and model-based detection of small-worldness," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 13(1), pages 117-141, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bartesaghi, Paolo & Clemente, Gian Paolo & Grassi, Rosanna, 2023. "Clustering coefficients as measures of the complex interactions in a directed weighted multilayer network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 610(C).
    2. Nicola Giuseppe Castellano & Roy Cerqueti & Bruno Maria Franceschetti, 2021. "Evaluating risks-based communities of Mafia companies: a complex networks perspective," Review of Quantitative Finance and Accounting, Springer, vol. 57(4), pages 1463-1486, November.
    3. Paolo Bartesaghi & Gian Paolo Clemente & Rosanna Grassi, 2022. "Clustering coefficients as measures of the complex interactions in a directed weighted multilayer network," Papers 2206.06309, arXiv.org, revised Dec 2022.
    4. Huan Wang & Chuang Ma & Han-Shuang Chen & Ying-Cheng Lai & Hai-Feng Zhang, 2022. "Full reconstruction of simplicial complexes from binary contagion and Ising data," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    5. Vinayak, & Raghuvanshi, Adarsh & kshitij, Avinash, 2023. "Signatures of capacity development through research collaborations in artificial intelligence and machine learning," Journal of Informetrics, Elsevier, vol. 17(1).
    6. Supriya Tiwari & Pallavi Basu, 2024. "Quasi-randomization tests for network interference," Papers 2403.16673, arXiv.org.
    7. Anzhi Sheng & Qi Su & Aming Li & Long Wang & Joshua B. Plotkin, 2023. "Constructing temporal networks with bursty activity patterns," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    8. Panayotis Christidis & Álvaro Gomez Losada, 2019. "Email Based Institutional Network Analysis: Applications and Risks," Social Sciences, MDPI, vol. 8(11), pages 1-14, November.
    9. Samrachana Adhikari & Beau Dabbs, 2018. "Social Network Analysis in R: A Software Review," Journal of Educational and Behavioral Statistics, , vol. 43(2), pages 225-253, April.
    10. Tinic, Murat & Sensoy, Ahmet & Demir, Muge & Nguyen, Duc Khuong, 2020. "Broker Network Connectivity and the Cross-Section of Expected Stock Returns," MPRA Paper 104719, University Library of Munich, Germany.
    11. Wang, Xiaojie & Slamu, Wushour & Guo, Wenqiang & Wang, Sixiu & Ren, Yan, 2022. "A novel semi local measure of identifying influential nodes in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    12. Lin, Dan & Wu, Jiajing & Xuan, Qi & Tse, Chi K., 2022. "Ethereum transaction tracking: Inferring evolution of transaction networks via link prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).
    13. Ferreira, D.S.R. & Ribeiro, J. & Oliveira, P.S.L. & Pimenta, A.R. & Freitas, R.P. & Dutra, R.S. & Papa, A.R.R. & Mendes, J.F.F., 2022. "Spatiotemporal analysis of earthquake occurrence in synthetic and worldwide data," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
    14. Christophe Chorro & Emmanuelle Jay & Philippe De Peretti & Thibault Soler, 2021. "Frequency causality measures and Vector AutoRegressive (VAR) models: An improved subset selection method suited to parsimonious systems," Documents de travail du Centre d'Economie de la Sorbonne 21013, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    15. Mario V. Tomasello & Mauro Napoletano & Antonios Garas & Frank Schweitzer, 2017. "The rise and fall of R&D networks," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 26(4), pages 617-646.
    16. Qinghu Liao & Wenwen Dong & Boxin Zhao, 2023. "A New Strategy to Solve “the Tragedy of the Commons” in Sustainable Grassland Ecological Compensation: Experience from Inner Mongolia, China," Sustainability, MDPI, vol. 15(12), pages 1-24, June.
    17. Xinyu Huang & Dongming Chen & Dongqi Wang & Tao Ren, 2020. "MINE: Identifying Top- k Vital Nodes in Complex Networks via Maximum Influential Neighbors Expansion," Mathematics, MDPI, vol. 8(9), pages 1-25, August.
    18. Roy Cerqueti & Francesca Pampurini & Annagiulia Pezzola & Anna Grazia Quaranta, 2022. "Dangerous liasons and hot customers for banks," Review of Quantitative Finance and Accounting, Springer, vol. 59(1), pages 65-89, July.
    19. Xueguo Xu & Chen Xu & Wenxin Zhang, 2022. "Research on the Destruction Resistance of Giant Urban Rail Transit Network from the Perspective of Vulnerability," Sustainability, MDPI, vol. 14(12), pages 1-26, June.
    20. Jianhong Chen & Hongcai Ma & Shan Yang, 2023. "SEIOR Rumor Propagation Model Considering Hesitating Mechanism and Different Rumor-Refuting Ways in Complex Networks," Mathematics, MDPI, vol. 11(2), pages 1-22, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:166:y:2023:i:c:s096007792201147x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.