IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v166y2023ics0960077922011274.html
   My bibliography  Save this article

Quasi-projective synchronization of inertial complex-valued recurrent neural networks with mixed time-varying delay and mismatched parameters

Author

Listed:
  • Kumar, Ankit
  • Das, Subir
  • Singh, Sunny
  • Rajeev,

Abstract

This article investigates the quasi-projective synchronization of inertial complex-valued recurrent neural networks (ICVRNNs) with mixed time-varying delay and mismatched parameters. By using an appropriate variable transformation, the order of the ICVRNN differential system is reduced, and then, by applying the real decomposition method, it is separated into real and imaginary components. The matrix measure approach with the nonlinear Lipschitz activation functions is employed in the ICVRNN model. Through the proper description of the matrix measure approach, some sufficient conditions have been derived for the quasi-projective synchronization criteria of the considered model through designing a suitable controller. Here, some significant results have been provided for the ICVRNNs with mismatched parameters and mixed time-varying delay. Finally, two numerical simulations are discussed to validate the feasibility and persistence of our obtained results with few conditions.

Suggested Citation

  • Kumar, Ankit & Das, Subir & Singh, Sunny & Rajeev,, 2023. "Quasi-projective synchronization of inertial complex-valued recurrent neural networks with mixed time-varying delay and mismatched parameters," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
  • Handle: RePEc:eee:chsofr:v:166:y:2023:i:c:s0960077922011274
    DOI: 10.1016/j.chaos.2022.112948
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077922011274
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2022.112948?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huang, Chengdai & Cao, Jinde & Xiao, Min & Alsaedi, Ahmed & Hayat, Tasawar, 2017. "Bifurcations in a delayed fractional complex-valued neural network," Applied Mathematics and Computation, Elsevier, vol. 292(C), pages 210-227.
    2. Wang, Weiping & Sun, Yue & Yuan, Manman & Wang, Zhen & Cheng, Jun & Fan, Denggui & Kurths, Jürgen & Luo, Xiong & Wang, Chunyang, 2021. "Projective synchronization of memristive multidirectional associative memory neural networks via self-triggered impulsive control and its application to image protection," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    3. Kumar, Ankit & Das, Subir & Yadav, Vijay K. & Rajeev,, 2021. "Global quasi-synchronization of complex-valued recurrent neural networks with time-varying delay and interaction terms," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    4. Duan, Lian & Shi, Min & Huang, Chuangxia & Fang, Xianwen, 2021. "Synchronization in finite-/fixed-time of delayed diffusive complex-valued neural networks with discontinuous activations," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    5. Tang, Qian & Jian, Jigui, 2019. "Global exponential convergence for impulsive inertial complex-valued neural networks with time-varying delays," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 159(C), pages 39-56.
    6. Zhang, Weiwei & Cao, Jinde & Wu, Ranchao & Chen, Dingyuan & Alsaadi, Fuad E., 2018. "Novel results on projective synchronization of fractional-order neural networks with multiple time delays," Chaos, Solitons & Fractals, Elsevier, vol. 117(C), pages 76-83.
    7. Wei, Xiaofeng & Zhang, Ziye & Lin, Chong & Chen, Jian, 2021. "Synchronization and anti-synchronization for complex-valued inertial neural networks with time-varying delays," Applied Mathematics and Computation, Elsevier, vol. 403(C).
    8. Yan, Hongyun & Qiao, Yuanhua & Duan, Lijuan & Miao, Jun, 2022. "New results of quasi-projective synchronization for fractional-order complex-valued neural networks with leakage and discrete delays," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    9. Chen, Chuan & Li, Lixiang & Peng, Haipeng & Yang, Yixian & Mi, Ling & Qiu, Baolin, 2019. "Fixed-time projective synchronization of memristive neural networks with discrete delay," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    10. Long, Changqing & Zhang, Guodong & Hu, Junhao, 2021. "Fixed-time synchronization for delayed inertial complex-valued neural networks," Applied Mathematics and Computation, Elsevier, vol. 405(C).
    11. Ankit Kumar & Subir Das & Sapna Baluni & Vijay K. Yadav & Jianquan Lu, 2022. "Global quasi-synchronisation of fuzzy cellular neural networks with time varying delay and interaction terms," International Journal of Systems Science, Taylor & Francis Journals, vol. 53(12), pages 2679-2693, September.
    12. Chen, Xiaofeng & Zhao, Zhenjiang & Song, Qiankun & Hu, Jin, 2017. "Multistability of complex-valued neural networks with time-varying delays," Applied Mathematics and Computation, Elsevier, vol. 294(C), pages 18-35.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shi, Lingna & Li, Jiarong & Jiang, Haijun & Wang, Jinling, 2023. "Quasi-synchronization of multi-layer delayed neural networks with parameter mismatches via impulsive control," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pan, Jinsong & Zhang, Zhengqiu, 2021. "Finite-time synchronization for delayed complex-valued neural networks via the exponential-type controllers of time variable," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    2. Yaning Yu & Ziye Zhang, 2022. "State Estimation for Complex-Valued Inertial Neural Networks with Multiple Time Delays," Mathematics, MDPI, vol. 10(10), pages 1-14, May.
    3. Feng, Liang & Hu, Cheng & Yu, Juan & Jiang, Haijun & Wen, Shiping, 2021. "Fixed-time Synchronization of Coupled Memristive Complex-valued Neural Networks," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    4. Ganesan, Bhuvaneshwari & Annamalai, Manivannan, 2023. "Anti-synchronization analysis of chaotic neural networks using delay product type looped-Lyapunov functional," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    5. Abdurahman, Abdujelil & Abudusaimaiti, Mairemunisa & Jiang, Haijun, 2023. "Fixed/predefined-time lag synchronization of complex-valued BAM neural networks with stochastic perturbations," Applied Mathematics and Computation, Elsevier, vol. 444(C).
    6. Pu, Hao & Li, Fengjun, 2023. "Fixed/predefined-time synchronization of complex-valued discontinuous delayed neural networks via non-chattering and saturation control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 610(C).
    7. Zheng, Yi & Wu, Xiaoqun & Fan, Ziye & Wang, Wei, 2022. "Identifying topology and system parameters of fractional-order complex dynamical networks," Applied Mathematics and Computation, Elsevier, vol. 414(C).
    8. Guo, Runan & Xu, Shengyuan, 2023. "Observer-based sliding mode synchronization control of complex-valued neural networks with inertial term and mixed time-varying delays," Applied Mathematics and Computation, Elsevier, vol. 442(C).
    9. Pahnehkolaei, Seyed Mehdi Abedi & Alfi, Alireza & Machado, J.A. Tenreiro, 2019. "Delay independent robust stability analysis of delayed fractional quaternion-valued leaky integrator echo state neural networks with QUAD condition," Applied Mathematics and Computation, Elsevier, vol. 359(C), pages 278-293.
    10. Shi, Lingna & Li, Jiarong & Jiang, Haijun & Wang, Jinling, 2023. "Quasi-synchronization of multi-layer delayed neural networks with parameter mismatches via impulsive control," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    11. Xu, Quan & Xu, Xiaohui & Zhuang, Shengxian & Xiao, Jixue & Song, Chunhua & Che, Chang, 2018. "New complex projective synchronization strategies for drive-response networks with fractional complex-variable dynamics," Applied Mathematics and Computation, Elsevier, vol. 338(C), pages 552-566.
    12. Zhang, Weiwei & Zhang, Hai & Cao, Jinde & Zhang, Hongmei & Chen, Dingyuan, 2020. "Synchronization of delayed fractional-order complex-valued neural networks with leakage delay," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 556(C).
    13. Li, Xuemei & Liu, Xinge & Wang, Fengxian, 2023. "Anti-synchronization of fractional-order complex-valued neural networks with a leakage delay and time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    14. Tu, Zhengwen & Ding, Nan & Li, Liangliang & Feng, Yuming & Zou, Limin & Zhang, Wei, 2017. "Adaptive synchronization of memristive neural networks with time-varying delays and reaction–diffusion term," Applied Mathematics and Computation, Elsevier, vol. 311(C), pages 118-128.
    15. Peng, Qiu & Jian, Jigui, 2023. "Synchronization analysis of fractional-order inertial-type neural networks with time delays," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 205(C), pages 62-77.
    16. Jiang, Xiaowei & Chen, Xiangyong & Chi, Ming & Chen, Jie, 2020. "On Hopf bifurcation and control for a delay systems," Applied Mathematics and Computation, Elsevier, vol. 370(C).
    17. Qi, Xingnan & Bao, Haibo & Cao, Jinde, 2019. "Exponential input-to-state stability of quaternion-valued neural networks with time delay," Applied Mathematics and Computation, Elsevier, vol. 358(C), pages 382-393.
    18. Han, Siyu & Hu, Cheng & Yu, Juan & Jiang, Haijun & Wen, Shiping, 2021. "Stabilization of inertial Cohen-Grossberg neural networks with generalized delays: A direct analysis approach," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    19. Lin Cao & Rongwei Guo, 2022. "Partial Anti-Synchronization Problem of the 4D Financial Hyper-Chaotic System with Periodically External Disturbance," Mathematics, MDPI, vol. 10(18), pages 1-14, September.
    20. Wu, H.G. & Ye, Y. & Bao, B.C. & Chen, M. & Xu, Q., 2019. "Memristor initial boosting behaviors in a two-memristor-based hyperchaotic system," Chaos, Solitons & Fractals, Elsevier, vol. 121(C), pages 178-185.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:166:y:2023:i:c:s0960077922011274. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.