IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v174y2023ics0960077923007993.html
   My bibliography  Save this article

Anti-synchronization analysis of chaotic neural networks using delay product type looped-Lyapunov functional

Author

Listed:
  • Ganesan, Bhuvaneshwari
  • Annamalai, Manivannan

Abstract

This article examines the anti-synchronization (A-S) problem of time-varying delayed chaotic neural networks (NNs). A memory non-fragile sampled data controller (MNFSDC) has been constructed to effectively transmit information over networks, in which the control gain matrices include uncertainty. A new delay-product type looped Lyapunov functional has been introduced that includes the delay terms (h2−h(t)) and h(t) with sampling instant informations. The less conservative results are obtained by utilizing integral inequalities. The asymptotic stability of the error system is ensured by deriving sufficient conditions in the form of a linear matrix inequality. The proposed MNFSDC scheme anti-synchronizes the master and slave systems. Furthermore, numerical simulations are provided to validate the proposed result ensuring the A-S nature of the proposed chaotic NNs. Besides, comparison study is also given to show the proposed results are more efficient than the existing works.

Suggested Citation

  • Ganesan, Bhuvaneshwari & Annamalai, Manivannan, 2023. "Anti-synchronization analysis of chaotic neural networks using delay product type looped-Lyapunov functional," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
  • Handle: RePEc:eee:chsofr:v:174:y:2023:i:c:s0960077923007993
    DOI: 10.1016/j.chaos.2023.113898
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077923007993
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2023.113898?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Manivannan, R. & Samidurai, R. & Cao, Jinde & Alsaedi, Ahmed & Alsaadi, Fuad E., 2018. "Stability analysis of interval time-varying delayed neural networks including neutral time-delay and leakage delay," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 433-445.
    2. Wang, Weiping & Sun, Yue & Yuan, Manman & Wang, Zhen & Cheng, Jun & Fan, Denggui & Kurths, Jürgen & Luo, Xiong & Wang, Chunyang, 2021. "Projective synchronization of memristive multidirectional associative memory neural networks via self-triggered impulsive control and its application to image protection," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    3. Chen, Chuan & Li, Lixiang & Peng, Haipeng & Yang, Yixian, 2018. "Adaptive synchronization of memristor-based BAM neural networks with mixed delays," Applied Mathematics and Computation, Elsevier, vol. 322(C), pages 100-110.
    4. Xu, Wei & Zhu, Song & Fang, Xiaoyu & Wang, Wei, 2019. "Adaptive anti-synchronization of memristor-based complex-valued neural networks with time delays," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    5. Duan, Lian & Liu, Jinzhi & Huang, Chuangxia & Wang, Zengyun, 2022. "Finite-/fixed-time anti-synchronization of neural networks with leakage delays under discontinuous disturbances," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    6. Wei, Xiaofeng & Zhang, Ziye & Lin, Chong & Chen, Jian, 2021. "Synchronization and anti-synchronization for complex-valued inertial neural networks with time-varying delays," Applied Mathematics and Computation, Elsevier, vol. 403(C).
    7. Liu, Yamin & Xuan, Zuxing & Wang, Zhen & Zhou, Jianping & Liu, Yajuan, 2020. "Sampled-data exponential synchronization of time-delay neural networks subject to random controller gain perturbations," Applied Mathematics and Computation, Elsevier, vol. 385(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kumar, Ankit & Das, Subir & Singh, Sunny & Rajeev,, 2023. "Quasi-projective synchronization of inertial complex-valued recurrent neural networks with mixed time-varying delay and mismatched parameters," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    2. Karnan, A. & Nagamani, G., 2023. "Event-triggered extended dissipative synchronization for delayed neural networks with random uncertainties," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    3. Li, Xuemei & Liu, Xinge & Wang, Fengxian, 2023. "Anti-synchronization of fractional-order complex-valued neural networks with a leakage delay and time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    4. Pratap, A. & Raja, R. & Cao, J. & Lim, C.P. & Bagdasar, O., 2019. "Stability and pinning synchronization analysis of fractional order delayed Cohen–Grossberg neural networks with discontinuous activations," Applied Mathematics and Computation, Elsevier, vol. 359(C), pages 241-260.
    5. Duan, Lian & Shi, Min & Huang, Chuangxia & Fang, Xianwen, 2021. "Synchronization in finite-/fixed-time of delayed diffusive complex-valued neural networks with discontinuous activations," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    6. Lin Cao & Rongwei Guo, 2022. "Partial Anti-Synchronization Problem of the 4D Financial Hyper-Chaotic System with Periodically External Disturbance," Mathematics, MDPI, vol. 10(18), pages 1-14, September.
    7. Yan, Zhilian & Guo, Tong & Zhao, Anqi & Kong, Qingkai & Zhou, Jianping, 2022. "Reliable exponential H∞ filtering for a class of switched reaction-diffusion neural networks," Applied Mathematics and Computation, Elsevier, vol. 414(C).
    8. Qin, Xiaoli & Wang, Cong & Li, Lixiang & Peng, Haipeng & Yang, Yixian & Ye, Lu, 2018. "Finite-time modified projective synchronization of memristor-based neural network with multi-links and leakage delay," Chaos, Solitons & Fractals, Elsevier, vol. 116(C), pages 302-315.
    9. Tu, Zhengwen & Zhao, Yongxiang & Ding, Nan & Feng, Yuming & Zhang, Wei, 2019. "Stability analysis of quaternion-valued neural networks with both discrete and distributed delays," Applied Mathematics and Computation, Elsevier, vol. 343(C), pages 342-353.
    10. Duan, Lian & Liu, Jinzhi & Huang, Chuangxia & Wang, Zengyun, 2022. "Finite-/fixed-time anti-synchronization of neural networks with leakage delays under discontinuous disturbances," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    11. Cao, Yang & Udhayakumar, K. & Veerakumari, K. Pradeepa & Rakkiyappan, R., 2022. "Memory sampled data control for switched-type neural networks and its application in image secure communications," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 201(C), pages 564-587.
    12. Pan, Jinsong & Zhang, Zhengqiu, 2021. "Finite-time synchronization for delayed complex-valued neural networks via the exponential-type controllers of time variable," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    13. Zhou, Wenjia & Hu, Yuanfa & Liu, Xiaoyang & Cao, Jinde, 2022. "Finite-time adaptive synchronization of coupled uncertain neural networks via intermittent control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 596(C).
    14. Wenjun Dong & Yujiao Huang & Tingan Chen & Xinggang Fan & Haixia Long, 2022. "Local Lagrange Exponential Stability Analysis of Quaternion-Valued Neural Networks with Time Delays," Mathematics, MDPI, vol. 10(13), pages 1-21, June.
    15. Zhen Yang & Zhengqiu Zhang, 2023. "New Results on Finite-Time Synchronization of Complex-Valued BAM Neural Networks with Time Delays by the Quadratic Analysis Approach," Mathematics, MDPI, vol. 11(6), pages 1-21, March.
    16. Yuan, Manman & Luo, Xiong & Mao, Xue & Han, Zhen & Sun, Lei & Zhu, Peican, 2022. "Event-triggered hybrid impulsive control on lag synchronization of delayed memristor-based bidirectional associative memory neural networks for image hiding," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    17. Luo, Mengzhuo & Liu, Xinzhi & Zhong, Shouming & Cheng, Jun, 2018. "Synchronization of stochastic complex networks with discrete-time and distributed coupling delayed via hybrid nonlinear and impulsive control," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 381-393.
    18. Abdurahman, Abdujelil & Abudusaimaiti, Mairemunisa & Jiang, Haijun, 2023. "Fixed/predefined-time lag synchronization of complex-valued BAM neural networks with stochastic perturbations," Applied Mathematics and Computation, Elsevier, vol. 444(C).
    19. Wang, Fen & Chen, Yuanlong, 2021. "Mean square exponential stability for stochastic memristor-based neural networks with leakage delay," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    20. Jingjing You & Abdujelil Abdurahman & Hayrengul Sadik, 2022. "Fixed/Predefined-Time Synchronization of Complex-Valued Stochastic BAM Neural Networks with Stabilizing and Destabilizing Impulse," Mathematics, MDPI, vol. 10(22), pages 1-20, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:174:y:2023:i:c:s0960077923007993. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.