IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v338y2018icp552-566.html
   My bibliography  Save this article

New complex projective synchronization strategies for drive-response networks with fractional complex-variable dynamics

Author

Listed:
  • Xu, Quan
  • Xu, Xiaohui
  • Zhuang, Shengxian
  • Xiao, Jixue
  • Song, Chunhua
  • Che, Chang

Abstract

This paper presents a fully decentralized adaptive scheme to solve the open problem of complex projective synchronization (CPS) in drive-response fractional complex-variable networks (DRFCVNs). Based on local mismatch with the desired state and between coupled nodes, several novel fully decentralized fractional adaptive (FDFA) strategies are proposed to adjust both the feedback control strengths and the coupling weights. By employing Hermitian form Lyapunov functionals and other fractional skills, some sufficient criteria are provided for CPS. Numerical simulation examples are finally employed to illustrate the efficiency of the new synchronization strategies.

Suggested Citation

  • Xu, Quan & Xu, Xiaohui & Zhuang, Shengxian & Xiao, Jixue & Song, Chunhua & Che, Chang, 2018. "New complex projective synchronization strategies for drive-response networks with fractional complex-variable dynamics," Applied Mathematics and Computation, Elsevier, vol. 338(C), pages 552-566.
  • Handle: RePEc:eee:apmaco:v:338:y:2018:i:c:p:552-566
    DOI: 10.1016/j.amc.2018.06.055
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300318305447
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2018.06.055?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xiaohui Xu & Jiye Zhang & Quan Xu & Zilong Chen & Weifan Zheng, 2017. "Impulsive Disturbances on the Dynamical Behavior of Complex-Valued Cohen-Grossberg Neural Networks with Both Time-Varying Delays and Continuously Distributed Delays," Complexity, Hindawi, vol. 2017, pages 1-12, October.
    2. Huang, Chengdai & Cao, Jinde & Xiao, Min & Alsaedi, Ahmed & Hayat, Tasawar, 2017. "Bifurcations in a delayed fractional complex-valued neural network," Applied Mathematics and Computation, Elsevier, vol. 292(C), pages 210-227.
    3. Wu, Guo-Cheng & Baleanu, Dumitru & Xie, He-Ping & Chen, Fu-Lai, 2016. "Chaos synchronization of fractional chaotic maps based on the stability condition," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 460(C), pages 374-383.
    4. Gallegos, Javier A. & Duarte-Mermoud, Manuel A., 2016. "On the Lyapunov theory for fractional order systems," Applied Mathematics and Computation, Elsevier, vol. 287, pages 161-170.
    5. Martínez-Guerra, Rafael & Pérez-Pinacho, Claudia A. & Gómez-Cortés, Gian Carlo & Cruz-Victoria, Juan C., 2015. "Synchronization of incommensurate fractional order system," Applied Mathematics and Computation, Elsevier, vol. 262(C), pages 260-266.
    6. Wang, Fei & Yang, Yongqing & Hu, Manfeng & Xu, Xianyun, 2015. "Projective cluster synchronization of fractional-order coupled-delay complex network via adaptive pinning control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 434(C), pages 134-143.
    7. Ding, Dawei & Yan, Jie & Wang, Nian & Liang, Dong, 2017. "Pinning synchronization of fractional order complex-variable dynamical networks with time-varying coupling," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 41-50.
    8. Yang, Xujun & Li, Chuandong & Huang, Tingwen & Song, Qiankun, 2017. "Mittag–Leffler stability analysis of nonlinear fractional-order systems with impulses," Applied Mathematics and Computation, Elsevier, vol. 293(C), pages 416-422.
    9. Li, Hong-Li & Jiang, Yao-Lin & Wang, Zuolei & Zhang, Long & Teng, Zhidong, 2015. "Global Mittag–Leffler stability of coupled system of fractional-order differential equations on network," Applied Mathematics and Computation, Elsevier, vol. 270(C), pages 269-277.
    10. Chao Luo & Xingyuan Wang, 2013. "Chaos Generated From The Fractional-Order Complex Chen System And Its Application To Digital Secure Communication," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 24(04), pages 1-23.
    11. Chai, Yi & Chen, Liping & Wu, Ranchao & Sun, Jian, 2012. "Adaptive pinning synchronization in fractional-order complex dynamical networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(22), pages 5746-5758.
    12. Zhang, Lei & Song, Qiankun & Zhao, Zhenjiang, 2017. "Stability analysis of fractional-order complex-valued neural networks with both leakage and discrete delays," Applied Mathematics and Computation, Elsevier, vol. 298(C), pages 296-309.
    13. Shi, Yanchao & Cao, Jinde & Chen, Guanrong, 2017. "Exponential stability of complex-valued memristor-based neural networks with time-varying delays," Applied Mathematics and Computation, Elsevier, vol. 313(C), pages 222-234.
    14. Wu, Guo-Cheng & Baleanu, Dumitru & Luo, Wei-Hua, 2017. "Lyapunov functions for Riemann–Liouville-like fractional difference equations," Applied Mathematics and Computation, Elsevier, vol. 314(C), pages 228-236.
    15. Chen, Xiaofeng & Zhao, Zhenjiang & Song, Qiankun & Hu, Jin, 2017. "Multistability of complex-valued neural networks with time-varying delays," Applied Mathematics and Computation, Elsevier, vol. 294(C), pages 18-35.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Fei & Zheng, Zhaowen, 2019. "Quasi-projective synchronization of fractional order chaotic systems under input saturation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    2. Xiaohui Xu & Huanbin Xue & Yiqiang Peng & Quan Xu & Jibin Yang, 2018. "Robust Exponential Stability of Switched Complex-Valued Neural Networks with Interval Parameter Uncertainties and Impulses," Complexity, Hindawi, vol. 2018, pages 1-12, December.
    3. Xiaohui Xu & Jibin Yang & Yanhai Xu, 2019. "Mean Square Exponential Stability of Stochastic Complex-Valued Neural Networks with Mixed Delays," Complexity, Hindawi, vol. 2019, pages 1-20, June.
    4. Xu, Yao & Li, Wenxue, 2020. "Finite-time synchronization of fractional-order complex-valued coupled systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
    5. Jinman He & Fangqi Chen & Qinsheng Bi, 2019. "Quasi-Matrix and Quasi-Inverse-Matrix Projective Synchronization for Delayed and Disturbed Fractional Order Neural Network," Complexity, Hindawi, vol. 2019, pages 1-15, April.
    6. Xue, Huanbin & Xu, Xiaohui & Zhang, Jiye & Yang, Xiaopeng, 2019. "Robust stability of impulsive switched neural networks with multiple time delays," Applied Mathematics and Computation, Elsevier, vol. 359(C), pages 456-475.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pahnehkolaei, Seyed Mehdi Abedi & Alfi, Alireza & Machado, J.A. Tenreiro, 2019. "Delay independent robust stability analysis of delayed fractional quaternion-valued leaky integrator echo state neural networks with QUAD condition," Applied Mathematics and Computation, Elsevier, vol. 359(C), pages 278-293.
    2. Hu, Binxin & Song, Qiankun & Zhao, Zhenjiang, 2020. "Robust state estimation for fractional-order complex-valued delayed neural networks with interval parameter uncertainties: LMI approach," Applied Mathematics and Computation, Elsevier, vol. 373(C).
    3. Yang, Xujun & Li, Chuandong & Huang, Tingwen & Song, Qiankun & Huang, Junjian, 2018. "Synchronization of fractional-order memristor-based complex-valued neural networks with uncertain parameters and time delays," Chaos, Solitons & Fractals, Elsevier, vol. 110(C), pages 105-123.
    4. Tu, Zhengwen & Ding, Nan & Li, Liangliang & Feng, Yuming & Zou, Limin & Zhang, Wei, 2017. "Adaptive synchronization of memristive neural networks with time-varying delays and reaction–diffusion term," Applied Mathematics and Computation, Elsevier, vol. 311(C), pages 118-128.
    5. Feng, Liang & Hu, Cheng & Yu, Juan & Jiang, Haijun & Wen, Shiping, 2021. "Fixed-time Synchronization of Coupled Memristive Complex-valued Neural Networks," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    6. Tu, Zhengwen & Zhao, Yongxiang & Ding, Nan & Feng, Yuming & Zhang, Wei, 2019. "Stability analysis of quaternion-valued neural networks with both discrete and distributed delays," Applied Mathematics and Computation, Elsevier, vol. 343(C), pages 342-353.
    7. Huang, Conggui & Wang, Fei & Zheng, Zhaowen, 2021. "Exponential stability for nonlinear fractional order sampled-data control systems with its applications," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    8. Yang, Xujun & Li, Chuandong & Huang, Tingwen & Song, Qiankun, 2017. "Mittag–Leffler stability analysis of nonlinear fractional-order systems with impulses," Applied Mathematics and Computation, Elsevier, vol. 293(C), pages 416-422.
    9. Xiaohui Xu & Jibin Yang & Yanhai Xu, 2019. "Mean Square Exponential Stability of Stochastic Complex-Valued Neural Networks with Mixed Delays," Complexity, Hindawi, vol. 2019, pages 1-20, June.
    10. Mo, Lipo & Yuan, Xiaolin & Yu, Yongguang, 2018. "Target-encirclement control of fractional-order multi-agent systems with a leader," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 479-491.
    11. Liu, Xianggang & Ma, Li, 2020. "Chaotic vibration, bifurcation, stabilization and synchronization control for fractional discrete-time systems," Applied Mathematics and Computation, Elsevier, vol. 385(C).
    12. Weiyuan Ma & Changpin Li & Jingwei Deng, 2019. "Synchronization in Tempered Fractional Complex Networks via Auxiliary System Approach," Complexity, Hindawi, vol. 2019, pages 1-12, November.
    13. Li, Hong-Li & Hu, Cheng & Jiang, Yao-Lin & Wang, Zuolei & Teng, Zhidong, 2016. "Pinning adaptive and impulsive synchronization of fractional-order complex dynamical networks," Chaos, Solitons & Fractals, Elsevier, vol. 92(C), pages 142-149.
    14. Li, Ruoxia & Gao, Xingbao & Cao, Jinde, 2019. "Non-fragile state estimation for delayed fractional-order memristive neural networks," Applied Mathematics and Computation, Elsevier, vol. 340(C), pages 221-233.
    15. Pharunyou Chanthorn & Grienggrai Rajchakit & Jenjira Thipcha & Chanikan Emharuethai & Ramalingam Sriraman & Chee Peng Lim & Raja Ramachandran, 2020. "Robust Stability of Complex-Valued Stochastic Neural Networks with Time-Varying Delays and Parameter Uncertainties," Mathematics, MDPI, vol. 8(5), pages 1-19, May.
    16. Sriraman, R. & Cao, Yang & Samidurai, R., 2020. "Global asymptotic stability of stochastic complex-valued neural networks with probabilistic time-varying delays," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 171(C), pages 103-118.
    17. Yao, Yu & Wu, Li-Bing, 2022. "Backstepping control for fractional discrete-time systems," Applied Mathematics and Computation, Elsevier, vol. 434(C).
    18. Yuan, Jun & Zhao, Lingzhi & Huang, Chengdai & Xiao, Min, 2019. "Novel results on bifurcation for a fractional-order complex-valued neural network with leakage delay," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 868-883.
    19. Jinman He & Fangqi Chen & Qinsheng Bi, 2019. "Quasi-Matrix and Quasi-Inverse-Matrix Projective Synchronization for Delayed and Disturbed Fractional Order Neural Network," Complexity, Hindawi, vol. 2019, pages 1-15, April.
    20. Zhang, Hai & Ye, Miaolin & Ye, Renyu & Cao, Jinde, 2018. "Synchronization stability of Riemann–Liouville fractional delay-coupled complex neural networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 155-165.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:338:y:2018:i:c:p:552-566. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.