IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v509y2018icp479-491.html
   My bibliography  Save this article

Target-encirclement control of fractional-order multi-agent systems with a leader

Author

Listed:
  • Mo, Lipo
  • Yuan, Xiaolin
  • Yu, Yongguang

Abstract

This paper addresses the target-encirclement control problem of fractional-order multi-agent systems(FOMASs) with a leader, where the state information of the target can only be obtained by the leader while followers cannot. First, a new target-encirclement control protocol is proposed, where the state estimators of the leader and the target are induced. Next, some sufficient conditions based on the theory of Mittag-Leffler stability are given for achieving target-encirclement control of FOMASs with a leader. Finally, simulation results are provided to demonstrate the effectiveness of the presented results.

Suggested Citation

  • Mo, Lipo & Yuan, Xiaolin & Yu, Yongguang, 2018. "Target-encirclement control of fractional-order multi-agent systems with a leader," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 479-491.
  • Handle: RePEc:eee:phsmap:v:509:y:2018:i:c:p:479-491
    DOI: 10.1016/j.physa.2018.06.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437118307374
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2018.06.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wu, Guo-Cheng & Baleanu, Dumitru & Xie, He-Ping & Chen, Fu-Lai, 2016. "Chaos synchronization of fractional chaotic maps based on the stability condition," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 460(C), pages 374-383.
    2. Hu, Jiangping & Hong, Yiguang, 2007. "Leader-following coordination of multi-agent systems with coupling time delays," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 374(2), pages 853-863.
    3. Mo, Lipo & Niu, Yuguang & Pan, Tingting, 2015. "Consensus of heterogeneous multi-agent systems with switching jointly-connected interconnection," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 427(C), pages 132-140.
    4. Zhang, Lei & Song, Qiankun & Zhao, Zhenjiang, 2017. "Stability analysis of fractional-order complex-valued neural networks with both leakage and discrete delays," Applied Mathematics and Computation, Elsevier, vol. 298(C), pages 296-309.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Xuxi & Liu, Xianping & Lewis, Frank L. & Wang, Xia, 2020. "Bipartite tracking consensus of nonlinear multi-agent systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    2. Yuan, Xiaolin & Mo, Lipo & Yu, Yongguang, 2019. "Agreement coordination of fractional-order multi-agent systems with reaction–diffusion and persistent disturbances," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 680-693.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Quan & Xu, Xiaohui & Zhuang, Shengxian & Xiao, Jixue & Song, Chunhua & Che, Chang, 2018. "New complex projective synchronization strategies for drive-response networks with fractional complex-variable dynamics," Applied Mathematics and Computation, Elsevier, vol. 338(C), pages 552-566.
    2. Tu, Zhengwen & Ding, Nan & Li, Liangliang & Feng, Yuming & Zou, Limin & Zhang, Wei, 2017. "Adaptive synchronization of memristive neural networks with time-varying delays and reaction–diffusion term," Applied Mathematics and Computation, Elsevier, vol. 311(C), pages 118-128.
    3. Jing Bai & Guoguang Wen & Ahmed Rahmani & Xing Chu & Yongguang Yu, 2016. "Consensus with a reference state for fractional-order multi-agent systems," International Journal of Systems Science, Taylor & Francis Journals, vol. 47(1), pages 222-234, January.
    4. Ruan, Xiaoli & Xu, Chen & Feng, Jianwen & Wang, Jingyi & Zhao, Yi, 2022. "Adaptive dynamic event-triggered control for multi-agent systems with matched uncertainties under directed topologies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 586(C).
    5. Tu, Zhengwen & Zhao, Yongxiang & Ding, Nan & Feng, Yuming & Zhang, Wei, 2019. "Stability analysis of quaternion-valued neural networks with both discrete and distributed delays," Applied Mathematics and Computation, Elsevier, vol. 343(C), pages 342-353.
    6. Jahanshahi, Hadi & Yousefpour, Amin & Munoz-Pacheco, Jesus M. & Kacar, Sezgin & Pham, Viet-Thanh & Alsaadi, Fawaz E., 2020. "A new fractional-order hyperchaotic memristor oscillator: Dynamic analysis, robust adaptive synchronization, and its application to voice encryption," Applied Mathematics and Computation, Elsevier, vol. 383(C).
    7. Yuan, Xiaolin & Mo, Lipo & Yu, Yongguang, 2019. "Agreement coordination of fractional-order multi-agent systems with reaction–diffusion and persistent disturbances," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 680-693.
    8. Xi, Jianxiang & Shi, Zongying & Zhong, Yisheng, 2012. "Admissible consensus and consensualization of high-order linear time-invariant singular swarm systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(23), pages 5839-5849.
    9. Zhao, Can & Liu, Xinzhi & Zhong, Shouming & Shi, Kaibo & Liao, Daixi & Zhong, Qishui, 2021. "Leader-following consensus of multi-agent systems via novel sampled-data event-triggered control," Applied Mathematics and Computation, Elsevier, vol. 395(C).
    10. Zhixin Zhang & Yufeng Zhang & Jia-Bao Liu & Jiang Wei, 2019. "Global Asymptotical Stability Analysis for Fractional Neural Networks with Time-Varying Delays," Mathematics, MDPI, vol. 7(2), pages 1-8, February.
    11. Xianyong Zhang & Yaohong Huang & Li Li & Wei-Chang Yeh, 2018. "Power and Capacity Consensus Tracking of Distributed Battery Storage Systems in Modular Microgrids," Energies, MDPI, vol. 11(6), pages 1-25, June.
    12. Wu, Zhihai & Peng, Li & Xie, Linbo & Wen, Jiwei, 2013. "Stochastic bounded consensus tracking of leader–follower multi-agent systems with measurement noises based on sampled-data with small sampling delay," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(4), pages 918-928.
    13. Liu, Xianggang & Ma, Li, 2020. "Chaotic vibration, bifurcation, stabilization and synchronization control for fractional discrete-time systems," Applied Mathematics and Computation, Elsevier, vol. 385(C).
    14. He, Xiaoyan & Wang, Qingyun & Yu, Wenwu, 2015. "Finite-time distributed cooperative attitude tracking control for multiple rigid spacecraft," Applied Mathematics and Computation, Elsevier, vol. 256(C), pages 724-734.
    15. Li, Yuxing & Geng, Bo & Jiao, Shangbin, 2022. "Dispersion entropy-based Lempel-Ziv complexity: A new metric for signal analysis," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    16. Zhang, Jiangbo & Hong, Yiguang, 2013. "Opinion evolution analysis for short-range and long-range Deffuant–Weisbuch models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(21), pages 5289-5297.
    17. Xi, Lei & Yu, Tao & Yang, Bo & Zhang, Xiaoshun & Qiu, Xuanyu, 2016. "A wolf pack hunting strategy based virtual tribes control for automatic generation control of smart grid," Applied Energy, Elsevier, vol. 178(C), pages 198-211.
    18. Weiyuan Ma & Changpin Li & Jingwei Deng, 2019. "Synchronization in Tempered Fractional Complex Networks via Auxiliary System Approach," Complexity, Hindawi, vol. 2019, pages 1-12, November.
    19. Jin-E Zhang, 2017. "Multisynchronization for Coupled Multistable Fractional-Order Neural Networks via Impulsive Control," Complexity, Hindawi, vol. 2017, pages 1-10, August.
    20. Wu, Jie & Deng, Qun & Han, Tao & Yang, Qing-Sheng & Zhan, Heng, 2019. "Bipartite tracking consensus for multi-agent systems with Lipschitz-Type nonlinear dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 1360-1369.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:509:y:2018:i:c:p:479-491. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.