IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v549y2020ics0378437119321661.html
   My bibliography  Save this article

Finite-time synchronization of fractional-order complex-valued coupled systems

Author

Listed:
  • Xu, Yao
  • Li, Wenxue

Abstract

In this paper, instead of separating the complex-valued system into two real-valued systems, the finite-time synchronization of fractional-order complex-valued coupled systems is investigated for the first time. Compared with other finite-time synchronization control, it should be stressed that an effective and novel controller is firstly designed without the help of sign functions. Moreover, some sufficient conditions are derived on the basis of the graph-theoretic approach and the theory of complex functions. Besides, the settling time of synchronization is estimated which is related to the order of fractional derivative, control parameters and the topological structure of the networks. Finally, two numerical examples are provided to show the feasibility and effectiveness of theoretical results.

Suggested Citation

  • Xu, Yao & Li, Wenxue, 2020. "Finite-time synchronization of fractional-order complex-valued coupled systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
  • Handle: RePEc:eee:phsmap:v:549:y:2020:i:c:s0378437119321661
    DOI: 10.1016/j.physa.2019.123903
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437119321661
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.123903?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Lan & Yang, Xinsong & Xu, Chen & Feng, Jianwen, 2017. "Exponential synchronization of complex-valued complex networks with time-varying delays and stochastic perturbations via time-delayed impulsive control," Applied Mathematics and Computation, Elsevier, vol. 306(C), pages 22-30.
    2. Zhang, Chunmei & Han, Bang-Sheng, 2020. "Stability analysis of stochastic delayed complex networks with multi-weights based on Razumikhin technique and graph theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 538(C).
    3. Yang, Xujun & Li, Chuandong & Huang, Tingwen & Song, Qiankun & Huang, Junjian, 2018. "Synchronization of fractional-order memristor-based complex-valued neural networks with uncertain parameters and time delays," Chaos, Solitons & Fractals, Elsevier, vol. 110(C), pages 105-123.
    4. Ding, Dawei & Yan, Jie & Wang, Nian & Liang, Dong, 2017. "Pinning synchronization of fractional order complex-variable dynamical networks with time-varying coupling," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 41-50.
    5. Wang, Aijuan & Liao, Xiaofeng & Dong, Tao, 2018. "Finite-time event-triggered synchronization for reaction–diffusion complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 111-120.
    6. Xu, Quan & Xu, Xiaohui & Zhuang, Shengxian & Xiao, Jixue & Song, Chunhua & Che, Chang, 2018. "New complex projective synchronization strategies for drive-response networks with fractional complex-variable dynamics," Applied Mathematics and Computation, Elsevier, vol. 338(C), pages 552-566.
    7. Chen, Chuan & Li, Lixiang & Peng, Haipeng & Yang, Yixian & Mi, Ling & Qiu, Baolin, 2019. "Fixed-time projective synchronization of memristive neural networks with discrete delay," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    8. Zhang, Yuting & Yu, Yongguang & Cui, Xueli, 2018. "Dynamical behaviors analysis of memristor-based fractional-order complex-valued neural networks with time delay," Applied Mathematics and Computation, Elsevier, vol. 339(C), pages 242-258.
    9. Guo, Ying & Zhao, Wei & Ding, Xiaohua, 2019. "Input-to-state stability for stochastic multi-group models with multi-dispersal and time-varying delay," Applied Mathematics and Computation, Elsevier, vol. 343(C), pages 114-127.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shuang Wang & Hai Zhang & Weiwei Zhang & Hongmei Zhang, 2021. "Finite-Time Projective Synchronization of Caputo Type Fractional Complex-Valued Delayed Neural Networks," Mathematics, MDPI, vol. 9(12), pages 1-14, June.
    2. Zhen Yang & Zhengqiu Zhang, 2023. "New Results on Finite-Time Synchronization of Complex-Valued BAM Neural Networks with Time Delays by the Quadratic Analysis Approach," Mathematics, MDPI, vol. 11(6), pages 1-21, March.
    3. Sotiris K. Ntouyas & Bashir Ahmad & Jessada Tariboon, 2022. "( k , ψ )-Hilfer Nonlocal Integro-Multi-Point Boundary Value Problems for Fractional Differential Equations and Inclusions," Mathematics, MDPI, vol. 10(15), pages 1-20, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Pengfei & Li, Shaoyu & Su, Huan, 2020. "Stabilization of complex-valued stochastic functional differential systems on networks via impulsive control," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    2. Feng, Liang & Hu, Cheng & Yu, Juan & Jiang, Haijun & Wen, Shiping, 2021. "Fixed-time Synchronization of Coupled Memristive Complex-valued Neural Networks," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    3. He, Jin-Man & Pei, Li-Jun, 2023. "Function matrix projection synchronization for the multi-time delayed fractional order memristor-based neural networks with parameter uncertainty," Applied Mathematics and Computation, Elsevier, vol. 454(C).
    4. Jinman He & Fangqi Chen & Qinsheng Bi, 2019. "Quasi-Matrix and Quasi-Inverse-Matrix Projective Synchronization for Delayed and Disturbed Fractional Order Neural Network," Complexity, Hindawi, vol. 2019, pages 1-15, April.
    5. Xu, Yao & Yu, Jintong & Li, Wenxue & Feng, Jiqiang, 2021. "Global asymptotic stability of fractional-order competitive neural networks with multiple time-varying-delay links," Applied Mathematics and Computation, Elsevier, vol. 389(C).
    6. Peng, Qiu & Jian, Jigui, 2023. "Synchronization analysis of fractional-order inertial-type neural networks with time delays," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 205(C), pages 62-77.
    7. Pratap, A. & Raja, R. & Cao, J. & Lim, C.P. & Bagdasar, O., 2019. "Stability and pinning synchronization analysis of fractional order delayed Cohen–Grossberg neural networks with discontinuous activations," Applied Mathematics and Computation, Elsevier, vol. 359(C), pages 241-260.
    8. Zhang, Chunmei & Shi, Lin, 2021. "Graph-theoretic method on the periodicity of coupled predator–prey systems with infinite delays on a dispersal network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 561(C).
    9. Han, Xin-Xin & Wu, Kai-Ning & Ding, Xiaohua, 2020. "Finite-time stabilization for stochastic reaction-diffusion systems with Markovian switching via boundary control," Applied Mathematics and Computation, Elsevier, vol. 385(C).
    10. Gao, Shang & Peng, Keyu & Zhang, Chunrui, 2021. "Existence and global exponential stability of periodic solutions for feedback control complex dynamical networks with time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    11. Chen, Dazhao & Zhang, Zhengqiu, 2022. "Globally asymptotic synchronization for complex-valued BAM neural networks by the differential inequality way," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    12. Peng, Dongxue & Li, Xiaodi & Rakkiyappan, R. & Ding, Yanhui, 2021. "Stabilization of stochastic delayed systems: Event-triggered impulsive control," Applied Mathematics and Computation, Elsevier, vol. 401(C).
    13. Wang, Lingyu & Huang, Tingwen & Xiao, Qiang, 2018. "Global exponential synchronization of nonautonomous recurrent neural networks with time delays on time scales," Applied Mathematics and Computation, Elsevier, vol. 328(C), pages 263-275.
    14. Pan, Jinsong & Zhang, Zhengqiu, 2021. "Finite-time synchronization for delayed complex-valued neural networks via the exponential-type controllers of time variable," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    15. Zhang, Zhe & Ai, Zhaoyang & Zhang, Jing & Cheng, Fanyong & Liu, Feng & Ding, Can, 2020. "A general stability criterion for multidimensional fractional-order network systems based on whole oscillation principle for small fractional-order operators," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    16. Yadav, Vijay K. & Shukla, Vijay K. & Das, Subir, 2021. "Exponential synchronization of fractional-order complex chaotic systems and its application," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    17. Tu, Zhengwen & Yang, Xinsong & Wang, Liangwei & Ding, Nan, 2019. "Stability and stabilization of quaternion-valued neural networks with uncertain time-delayed impulses: Direct quaternion method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    18. Wang, Changyou & Yang, Qiang & Zhuo, Yuan & Li, Rui, 2020. "Synchronization analysis of a fractional-order non-autonomous neural network with time delay," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
    19. Zhou, Ya & Wan, Xiaoxiao & Huang, Chuangxia & Yang, Xinsong, 2020. "Finite-time stochastic synchronization of dynamic networks with nonlinear coupling strength via quantized intermittent control," Applied Mathematics and Computation, Elsevier, vol. 376(C).
    20. Chen, Yuan & Wu, Jianwei & Bao, Haibo, 2022. "Finite-time stabilization for delayed quaternion-valued coupled neural networks with saturated impulse," Applied Mathematics and Computation, Elsevier, vol. 425(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:549:y:2020:i:c:s0378437119321661. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.