IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v142y2021ics0960077920308250.html
   My bibliography  Save this article

Stabilization of inertial Cohen-Grossberg neural networks with generalized delays: A direct analysis approach

Author

Listed:
  • Han, Siyu
  • Hu, Cheng
  • Yu, Juan
  • Jiang, Haijun
  • Wen, Shiping

Abstract

The paper is mainly devoted to the stabilization problem of Cohen-Grossberg type inertial neural networks (INNs) with generalized delays by developing a direct analysis approach to replace the previous transformations of reduced order. Above all, a generalized form of time delays is developed to unify discrete constant delays, discrete variable delays and proportional delays. In stabilization analysis, in the absence of variable substitutions, a direct method is proposed by constructing Lyapunov functionals and designing control schemes for the addressed second-order Cohen-Grossberg INNs to achieve asymptotical or adaptive stabilization. The obtained criteria are simpler and more easily verified in applications compared with the related existing results. At last, three specified examples are provided to verify the theoretical results.

Suggested Citation

  • Han, Siyu & Hu, Cheng & Yu, Juan & Jiang, Haijun & Wen, Shiping, 2021. "Stabilization of inertial Cohen-Grossberg neural networks with generalized delays: A direct analysis approach," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
  • Handle: RePEc:eee:chsofr:v:142:y:2021:i:c:s0960077920308250
    DOI: 10.1016/j.chaos.2020.110432
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077920308250
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2020.110432?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Feng, Xiaomei & Zhang, Fengqin & Wang, Wenjuan, 2011. "Global exponential synchronization of delayed fuzzy cellular neural networks with impulsive effects," Chaos, Solitons & Fractals, Elsevier, vol. 44(1), pages 9-16.
    2. Sriraman, R. & Cao, Yang & Samidurai, R., 2020. "Global asymptotic stability of stochastic complex-valued neural networks with probabilistic time-varying delays," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 171(C), pages 103-118.
    3. Tang, Qian & Jian, Jigui, 2019. "Global exponential convergence for impulsive inertial complex-valued neural networks with time-varying delays," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 159(C), pages 39-56.
    4. Liao, Huaying & Zhang, Zhengqiu & Ren, Ling & Peng, Wenli, 2017. "Global asymptotic stability of periodic solutions for inertial delayed BAM neural networks via novel computing method of degree and inequality techniques," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 785-797.
    5. Huang, Tingwen & Li, Chuandong & Chen, Goong, 2007. "Stability of Cohen–Grossberg neural networks with unbounded distributed delays," Chaos, Solitons & Fractals, Elsevier, vol. 34(3), pages 992-996.
    6. Liu, Jin & Jian, Jigui & Wang, Baoxian, 2020. "Stability analysis for BAM quaternion-valued inertial neural networks with time delay via nonlinear measure approach," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 174(C), pages 134-152.
    7. Chaouki Aouiti & Rathinasamy Sakthivel & Farid Touati, 2020. "Global dissipativity of fuzzy cellular neural networks with inertial term and proportional delays," International Journal of Systems Science, Taylor & Francis Journals, vol. 51(8), pages 1392-1405, June.
    8. Cao, Yang & Sriraman, R. & Shyamsundarraj, N. & Samidurai, R., 2020. "Robust stability of uncertain stochastic complex-valued neural networks with additive time-varying delays," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 171(C), pages 207-220.
    9. Zhang, Xinhong & Li, Wenxue & Wang, Ke, 2015. "The existence and global exponential stability of periodic solution for a neutral coupled system on networks with delays," Applied Mathematics and Computation, Elsevier, vol. 264(C), pages 208-217.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fengjiao Zhang & Yinfang Song & Chao Wang, 2023. "α -Synchronization of a Class of Unbounded Delayed Inertial Cohen–Grossberg Neural Networks with Delayed Impulses," Mathematics, MDPI, vol. 11(19), pages 1-18, September.
    2. Xiong, Kailong & Hu, Cheng & Yu, Juan, 2023. "Direct approach-based synchronization of fully quaternion-valued neural networks with inertial term and time-varying delay," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Hai & Cheng, Yuhong & Zhang, Hongmei & Zhang, Weiwei & Cao, Jinde, 2022. "Hybrid control design for Mittag-Leffler projective synchronization on FOQVNNs with multiple mixed delays and impulsive effects," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 197(C), pages 341-357.
    2. Pan, Jinsong & Zhang, Zhengqiu, 2021. "Finite-time synchronization for delayed complex-valued neural networks via the exponential-type controllers of time variable," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    3. Pharunyou Chanthorn & Grienggrai Rajchakit & Sriraman Ramalingam & Chee Peng Lim & Raja Ramachandran, 2020. "Robust Dissipativity Analysis of Hopfield-Type Complex-Valued Neural Networks with Time-Varying Delays and Linear Fractional Uncertainties," Mathematics, MDPI, vol. 8(4), pages 1-22, April.
    4. Iswarya, M. & Raja, R. & Cao, J. & Niezabitowski, M. & Alzabut, J. & Maharajan, C., 2022. "New results on exponential input-to-state stability analysis of memristor based complex-valued inertial neural networks with proportional and distributed delays," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 201(C), pages 440-461.
    5. Wang, Shuzhan & Zhang, Ziye & Lin, Chong & Chen, Jian, 2021. "Fixed-time synchronization for complex-valued BAM neural networks with time-varying delays via pinning control and adaptive pinning control," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    6. Li, Wang & Zhao, Lingzhi & Shi, Hongjun & Zhao, Donghua & Sun, Yongzheng, 2021. "Realizing generalized outer synchronization of complex dynamical networks with stochastically adaptive coupling," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 187(C), pages 379-390.
    7. Li, Yongkun & Wang, Xiaohui, 2021. "Almost periodic solutions in distribution of Clifford-valued stochastic recurrent neural networks with time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    8. Tai, Weipeng & Zuo, Dandan & Xuan, Zuxing & Zhou, Jianping & Wang, Zhen, 2021. "Non-fragile L2−L∞ filtering for a class of switched neural networks," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 185(C), pages 629-645.
    9. Li, Hui & Kao, Yonggui & Li, Hong-Li, 2021. "Globally β-Mittag-Leffler stability and β-Mittag-Leffler convergence in Lagrange sense for impulsive fractional-order complex-valued neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    10. Zhao, Rui & Wang, Baoxian & Jian, Jigui, 2022. "Global μ-stabilization of quaternion-valued inertial BAM neural networks with time-varying delays via time-delayed impulsive control," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 202(C), pages 223-245.
    11. Peng, Qiu & Jian, Jigui, 2023. "Synchronization analysis of fractional-order inertial-type neural networks with time delays," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 205(C), pages 62-77.
    12. Sheng, Li & Yang, Huizhong, 2009. "Robust stability of uncertain Markovian jumping Cohen–Grossberg neural networks with mixed time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 42(4), pages 2120-2128.
    13. Zhang, Zhengqiu & Yang, Zhen, 2023. "Asymptotic stability for quaternion-valued fuzzy BAM neural networks via integral inequality approach," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    14. Pan, Jie & Pan, Zhaoya, 2021. "Novel robust stability criteria for uncertain parameter quaternionic neural networks with mixed delays: Whole quaternionic method," Applied Mathematics and Computation, Elsevier, vol. 407(C).
    15. Zhang, Yutian & Luo, Qi, 2012. "Novel stability criteria for impulsive delayed reaction–diffusion Cohen–Grossberg neural networks via Hardy–Poincarè inequality," Chaos, Solitons & Fractals, Elsevier, vol. 45(8), pages 1033-1040.
    16. Shih, Chih-Wen & Tseng, Jui-Pin, 2009. "Global consensus for discrete-time competitive systems," Chaos, Solitons & Fractals, Elsevier, vol. 41(1), pages 302-310.
    17. Xu, Liguang & Xu, Daoyi, 2009. "Exponential p-stability of impulsive stochastic neural networks with mixed delays," Chaos, Solitons & Fractals, Elsevier, vol. 41(1), pages 263-272.
    18. Liang, Tao & Yang, Degang & Lei, Li & Zhang, Wanli & Pan, Ju, 2022. "Preassigned-time bipartite synchronization of complex networks with quantized couplings and stochastic perturbations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 202(C), pages 559-570.
    19. Li, Wang & Dai, Haifeng & Zhao, Lingzhi & Zhao, Donghua & Sun, Yongzheng, 2023. "Noise-induced consensus of leader-following multi-agent systems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 203(C), pages 1-11.
    20. Zhang, Guodong & Cao, Jinde, 2023. "New results on fixed/predefined-time synchronization of delayed fuzzy inertial discontinuous neural networks: Non-reduced order approach," Applied Mathematics and Computation, Elsevier, vol. 440(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:142:y:2021:i:c:s0960077920308250. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.