IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i19p4096-d1249374.html
   My bibliography  Save this article

α -Synchronization of a Class of Unbounded Delayed Inertial Cohen–Grossberg Neural Networks with Delayed Impulses

Author

Listed:
  • Fengjiao Zhang

    (School of Information and Mathematics, Yangtze University, Jingzhou 430023, China)

  • Yinfang Song

    (School of Information and Mathematics, Yangtze University, Jingzhou 430023, China)

  • Chao Wang

    (School of Information and Mathematics, Yangtze University, Jingzhou 430023, China)

Abstract

As an essential dynamic behavior, the synchronization of inertial Cohen–Grossberg neural networks (ICGNNs) has received considerable attention due to its successful applications in neural cryptography, public channel cryptography, security communications, and image encryption. In this article, the α -synchronization of a class of non-autonomous unbounded delayed inertial Cohen–Gossberg neural networks with delayed impulses is investigated. Firstly, several non-autonomous impulsive differential inequalities are established, where unbounded delays, delayed impulses, and time-variable coefficients are incorporated. Subsequently, based on the proposed impulsive differential inequalities and Lyapunov function approach, the feedback controllers are designed, and some criteria for α -synchronization are provided. Finally, the validity of the presented theoretical findings is demonstrated by two specific examples. It is shown that delayed impulses can be viewed as perturbations or stabilizing sources for non-autonomous ICGNNs.

Suggested Citation

  • Fengjiao Zhang & Yinfang Song & Chao Wang, 2023. "α -Synchronization of a Class of Unbounded Delayed Inertial Cohen–Grossberg Neural Networks with Delayed Impulses," Mathematics, MDPI, vol. 11(19), pages 1-18, September.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:19:p:4096-:d:1249374
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/19/4096/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/19/4096/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kong, Fanchao & Ren, Yong & Sakthivel, Rathinasamy, 2021. "New criteria on periodicity and stabilization of discontinuous uncertain inertial Cohen-Grossberg neural networks with proportional delays," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    2. Ruofeng Rao & Zhi Lin & Xiaoquan Ai & Jiarui Wu, 2022. "Synchronization of Epidemic Systems with Neumann Boundary Value under Delayed Impulse," Mathematics, MDPI, vol. 10(12), pages 1-10, June.
    3. Han, Siyu & Hu, Cheng & Yu, Juan & Jiang, Haijun & Wen, Shiping, 2021. "Stabilization of inertial Cohen-Grossberg neural networks with generalized delays: A direct analysis approach," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    4. Jun Wang & Yongqiang Tian & Lanfeng Hua & Kaibo Shi & Shouming Zhong & Shiping Wen, 2023. "New Results on Finite-Time Synchronization Control of Chaotic Memristor-Based Inertial Neural Networks with Time-Varying Delays," Mathematics, MDPI, vol. 11(3), pages 1-18, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiong, Kailong & Hu, Cheng & Yu, Juan, 2023. "Direct approach-based synchronization of fully quaternion-valued neural networks with inertial term and time-varying delay," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    2. Chao Wang & Yinfang Song & Fengjiao Zhang & Yuxiao Zhao, 2023. "Exponential Stability of a Class of Neutral Inertial Neural Networks with Multi-Proportional Delays and Leakage Delays," Mathematics, MDPI, vol. 11(12), pages 1-14, June.
    3. Muhammad Maaruf & Waleed M. Hamanah & Mohammad A. Abido, 2023. "Hybrid Backstepping Control of a Quadrotor Using a Radial Basis Function Neural Network," Mathematics, MDPI, vol. 11(4), pages 1-19, February.
    4. Sergey Kashchenko, 2023. "Van der Pol Equation with a Large Feedback Delay," Mathematics, MDPI, vol. 11(6), pages 1-19, March.
    5. Ruixia Liu & Lei Xing & Hong Deng & Weichao Zhong, 2023. "Finite-Time Adaptive Fuzzy Control for Unmodeled Dynamical Systems with Actuator Faults," Mathematics, MDPI, vol. 11(9), pages 1-22, May.
    6. Mingli Xia & Linna Liu & Jianyin Fang & Yicheng Zhang, 2023. "Stability Analysis for a Class of Stochastic Differential Equations with Impulses," Mathematics, MDPI, vol. 11(6), pages 1-10, March.
    7. Yupeng Shi & Dayong Ye, 2023. "Stability Analysis of Delayed Neural Networks via Composite-Matrix-Based Integral Inequality," Mathematics, MDPI, vol. 11(11), pages 1-13, May.
    8. Rhaima, Mohamed, 2023. "Ulam–Hyers stability for an impulsive Caputo–Hadamard fractional neutral stochastic differential equations with infinite delay," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 210(C), pages 281-295.
    9. Natalya O. Sedova & Olga V. Druzhinina, 2023. "Exponential Stability of Nonlinear Time-Varying Delay Differential Equations via Lyapunov–Razumikhin Technique," Mathematics, MDPI, vol. 11(4), pages 1-15, February.
    10. Chunsheng Wang & Xiangdong Liu & Feng Jiao & Hong Mai & Han Chen & Runpeng Lin, 2023. "Generalized Halanay Inequalities and Relative Application to Time-Delay Dynamical Systems," Mathematics, MDPI, vol. 11(8), pages 1-11, April.
    11. Zhen Yang & Zhengqiu Zhang, 2023. "New Results on Finite-Time Synchronization of Complex-Valued BAM Neural Networks with Time Delays by the Quadratic Analysis Approach," Mathematics, MDPI, vol. 11(6), pages 1-21, March.
    12. Li, Jing & Zhu, Quanxin, 2023. "Event-triggered impulsive control of stochastic functional differential systems," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    13. Quanxin Zhu, 2022. "Nonlinear Systems: Dynamics, Control, Optimization and Applications to the Science and Engineering," Mathematics, MDPI, vol. 10(24), pages 1-2, December.
    14. Yong Tang, 2023. "Traveling Wave Optical Solutions for the Generalized Fractional Kundu–Mukherjee–Naskar (gFKMN) Model," Mathematics, MDPI, vol. 11(11), pages 1-12, June.
    15. Wei Wang & Jinming Liang & Mihan Liu & Liming Ding & Hongbing Zeng, 2024. "Novel Robust Stability Criteria for Lur’e Systems with Time-Varying Delay," Mathematics, MDPI, vol. 12(4), pages 1-12, February.
    16. Haiqing Du & Xiaojing Wang & Bo Du, 2023. "Positive Periodic Solution for Pipe/Tank Flow Configurations with Friction," Mathematics, MDPI, vol. 11(8), pages 1-11, April.
    17. Zhengqi Ma & Shoucheng Yuan & Kexin Meng & Shuli Mei, 2023. "Mean-Square Stability of Uncertain Delayed Stochastic Systems Driven by G-Brownian Motion," Mathematics, MDPI, vol. 11(10), pages 1-16, May.
    18. Qing Yang & Xiaojing Wang & Xiwang Cheng & Bo Du & Yuxiao Zhao, 2023. "Positive Periodic Solution for Neutral-Type Integral Differential Equation Arising in Epidemic Model," Mathematics, MDPI, vol. 11(12), pages 1-13, June.
    19. Liu, Zhiguang & Zhu, Quanxin, 2023. "Ultimate boundedness of impulsive stochastic delay differential equations with delayed impulses," Statistics & Probability Letters, Elsevier, vol. 199(C).
    20. Yazid Alhojilan & Hamdy M. Ahmed, 2023. "New Results Concerning Approximate Controllability of Conformable Fractional Noninstantaneous Impulsive Stochastic Evolution Equations via Poisson Jumps," Mathematics, MDPI, vol. 11(5), pages 1-16, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:19:p:4096-:d:1249374. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.