IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i4p896-d1063996.html
   My bibliography  Save this article

Exponential Stability of Nonlinear Time-Varying Delay Differential Equations via Lyapunov–Razumikhin Technique

Author

Listed:
  • Natalya O. Sedova

    (Department of Mathematics, Information and Aviation Technology, Ulyanovsk State University, 432017 Ulyanovsk, Russia)

  • Olga V. Druzhinina

    (Federal Research Center “Computer Science and Control” of Russian Academy of Sciences, 119333 Moscow, Russia
    V.A. Trapeznikov Institute of Control Sciences of Russian Academy of Sciences, 117997 Moscow, Russia)

Abstract

In this article, some new sufficient conditions for the exponential stability of nonlinear time-varying delay differential equations are given. An extension of the classical asymptotical stability theorem in terms of a Lyapunov–Razumikhin function is obtained. The condition of non-positivity of the time derivative of a Razumikhin function is weakened. Additionally, the resulting sufficient asymptotic stability conditions allow us to guarantee uniform exponential stability and evaluate the exponential convergence rate of the system solutions. The effectiveness of the results is demonstrated by some examples.

Suggested Citation

  • Natalya O. Sedova & Olga V. Druzhinina, 2023. "Exponential Stability of Nonlinear Time-Varying Delay Differential Equations via Lyapunov–Razumikhin Technique," Mathematics, MDPI, vol. 11(4), pages 1-15, February.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:4:p:896-:d:1063996
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/4/896/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/4/896/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wei Hu, 2022. "Stability of Impulsive Stochastic Delay Systems with Markovian Switched Delay Effects," Mathematics, MDPI, vol. 10(7), pages 1-12, March.
    2. Branislav Rehák & Volodymyr Lynnyk, 2021. "Synchronization of a Network Composed of Stochastic Hindmarsh–Rose Neurons," Mathematics, MDPI, vol. 9(20), pages 1-16, October.
    3. Zihan Zou & Yinfang Song & Chi Zhao, 2022. "Razumikhin Theorems on Polynomial Stability of Neutral Stochastic Pantograph Differential Equations with Markovian Switching," Mathematics, MDPI, vol. 10(17), pages 1-15, August.
    4. Ruofeng Rao & Zhi Lin & Xiaoquan Ai & Jiarui Wu, 2022. "Synchronization of Epidemic Systems with Neumann Boundary Value under Delayed Impulse," Mathematics, MDPI, vol. 10(12), pages 1-10, June.
    5. Mao, Xuerong, 1996. "Razumikhin-type theorems on exponential stability of stochastic functional differential equations," Stochastic Processes and their Applications, Elsevier, vol. 65(2), pages 233-250, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Quanxin Zhu, 2022. "Nonlinear Systems: Dynamics, Control, Optimization and Applications to the Science and Engineering," Mathematics, MDPI, vol. 10(24), pages 1-2, December.
    2. Sergey Kashchenko, 2023. "Van der Pol Equation with a Large Feedback Delay," Mathematics, MDPI, vol. 11(6), pages 1-19, March.
    3. Zhou, Jianping & Park, Ju H. & Ma, Qian, 2016. "Non-fragile observer-based H∞ control for stochastic time-delay systems," Applied Mathematics and Computation, Elsevier, vol. 291(C), pages 69-83.
    4. Mingli Xia & Linna Liu & Jianyin Fang & Yicheng Zhang, 2023. "Stability Analysis for a Class of Stochastic Differential Equations with Impulses," Mathematics, MDPI, vol. 11(6), pages 1-10, March.
    5. Peng, Dongxue & Li, Xiaodi & Rakkiyappan, R. & Ding, Yanhui, 2021. "Stabilization of stochastic delayed systems: Event-triggered impulsive control," Applied Mathematics and Computation, Elsevier, vol. 401(C).
    6. Rhaima, Mohamed, 2023. "Ulam–Hyers stability for an impulsive Caputo–Hadamard fractional neutral stochastic differential equations with infinite delay," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 210(C), pages 281-295.
    7. Kao, Yonggui & Zhu, Quanxin & Qi, Wenhai, 2015. "Exponential stability and instability of impulsive stochastic functional differential equations with Markovian switching," Applied Mathematics and Computation, Elsevier, vol. 271(C), pages 795-804.
    8. Qi Wang & Huabin Chen & Chenggui Yuan, 2022. "A Note on Exponential Stability for Numerical Solution of Neutral Stochastic Functional Differential Equations," Mathematics, MDPI, vol. 10(6), pages 1-11, March.
    9. Li, Dingshi & Lin, Yusen, 2021. "Periodic measures of impulsive stochastic differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    10. Lijun Pan & Jinde Cao & Yong Ren, 2020. "Impulsive Stability of Stochastic Functional Differential Systems Driven by G-Brownian Motion," Mathematics, MDPI, vol. 8(2), pages 1-16, February.
    11. Chunsheng Wang & Xiangdong Liu & Feng Jiao & Hong Mai & Han Chen & Runpeng Lin, 2023. "Generalized Halanay Inequalities and Relative Application to Time-Delay Dynamical Systems," Mathematics, MDPI, vol. 11(8), pages 1-11, April.
    12. Udom, Akaninyene Udo, 2012. "Exponential stabilization of stochastic interval system with time dependent parameters," European Journal of Operational Research, Elsevier, vol. 222(3), pages 523-528.
    13. Li, Jing & Zhu, Quanxin, 2023. "Event-triggered impulsive control of stochastic functional differential systems," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    14. Qilong Sun & Haitao Li, 2022. "Robust Stabilization of Impulsive Boolean Control Networks with Function Perturbation," Mathematics, MDPI, vol. 10(21), pages 1-12, October.
    15. Yong Tang, 2023. "Traveling Wave Optical Solutions for the Generalized Fractional Kundu–Mukherjee–Naskar (gFKMN) Model," Mathematics, MDPI, vol. 11(11), pages 1-12, June.
    16. Haiqing Du & Xiaojing Wang & Bo Du, 2023. "Positive Periodic Solution for Pipe/Tank Flow Configurations with Friction," Mathematics, MDPI, vol. 11(8), pages 1-11, April.
    17. Zhengqi Ma & Shoucheng Yuan & Kexin Meng & Shuli Mei, 2023. "Mean-Square Stability of Uncertain Delayed Stochastic Systems Driven by G-Brownian Motion," Mathematics, MDPI, vol. 11(10), pages 1-16, May.
    18. Qing Yang & Xiaojing Wang & Xiwang Cheng & Bo Du & Yuxiao Zhao, 2023. "Positive Periodic Solution for Neutral-Type Integral Differential Equation Arising in Epidemic Model," Mathematics, MDPI, vol. 11(12), pages 1-13, June.
    19. Liu, Zhiguang & Zhu, Quanxin, 2023. "Ultimate boundedness of impulsive stochastic delay differential equations with delayed impulses," Statistics & Probability Letters, Elsevier, vol. 199(C).
    20. Yazid Alhojilan & Hamdy M. Ahmed, 2023. "New Results Concerning Approximate Controllability of Conformable Fractional Noninstantaneous Impulsive Stochastic Evolution Equations via Poisson Jumps," Mathematics, MDPI, vol. 11(5), pages 1-16, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:4:p:896-:d:1063996. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.