IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v187y2021icp379-390.html
   My bibliography  Save this article

Realizing generalized outer synchronization of complex dynamical networks with stochastically adaptive coupling

Author

Listed:
  • Li, Wang
  • Zhao, Lingzhi
  • Shi, Hongjun
  • Zhao, Donghua
  • Sun, Yongzheng

Abstract

In this paper the generalized outer synchronization between two coupled dynamical networks is investigated. Combining the advantages of adaptive control technique and stochastic coupling method, a new stochastically adaptive coupling method is proposed. We show, both analytically and numerically, that the generalized outer synchronization can be achieved by using the adaptive stochastic coupling. Particularly, the proposed coupling input can adjust its gain rapidly and randomly, which can optimize the required time and energy costs. Our results not only extend the applications of adaptive control technology but also provide a better understanding of the constructive role of noise on network synchronization.

Suggested Citation

  • Li, Wang & Zhao, Lingzhi & Shi, Hongjun & Zhao, Donghua & Sun, Yongzheng, 2021. "Realizing generalized outer synchronization of complex dynamical networks with stochastically adaptive coupling," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 187(C), pages 379-390.
  • Handle: RePEc:eee:matcom:v:187:y:2021:i:c:p:379-390
    DOI: 10.1016/j.matcom.2021.03.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475421000653
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2021.03.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gao, Wei & Yan, Li & Saeedi, Mohammadhossein & Saberi Nik, Hassan, 2018. "Ultimate bound estimation set and chaos synchronization for a financial risk system," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 154(C), pages 19-33.
    2. Xi, Yan-Ling & Wu, Zhao-Yan & Fu, Xin-Chu, 2009. "Dynamical synchronization and stability of complex networks with multi-layer centers," Chaos, Solitons & Fractals, Elsevier, vol. 40(2), pages 635-641.
    3. Wang, Guanjun & Cao, Jinde & Lu, Jianquan, 2010. "Outer synchronization between two nonidentical networks with circumstance noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(7), pages 1480-1488.
    4. Lämmer, Stefan & Kori, Hiroshi & Peters, Karsten & Helbing, Dirk, 2006. "Decentralised control of material or traffic flows in networks using phase-synchronisation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 363(1), pages 39-47.
    5. Sriraman, R. & Cao, Yang & Samidurai, R., 2020. "Global asymptotic stability of stochastic complex-valued neural networks with probabilistic time-varying delays," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 171(C), pages 103-118.
    6. Anishchenko, V.S. & Sosnovtseva, O.V. & Kopejkin, A.S. & Matujshkin, D.D. & Klimshin, A.V., 2002. "Synchronization effects in networks of stochastic bistable oscillators," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 58(4), pages 469-476.
    7. Xuefei Wu & Chen Xu & Jianwen Feng & Yi Zhao & Xuan Zhou, 2012. "Generalized Projective Synchronization between Two Different Neural Networks with Mixed Time Delays," Discrete Dynamics in Nature and Society, Hindawi, vol. 2012, pages 1-19, May.
    8. Garza-González, E. & Posadas-Castillo, C. & López-Mancilla, D. & Soriano-Sánchez, A.G., 2020. "Increasing synchronizability in a scale-free network via edge elimination," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 174(C), pages 233-243.
    9. Cao, Yang & Sriraman, R. & Shyamsundarraj, N. & Samidurai, R., 2020. "Robust stability of uncertain stochastic complex-valued neural networks with additive time-varying delays," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 171(C), pages 207-220.
    10. Tang, Hongwu & Chen, Liang & Lu, Jun-an & Tse, Chi K., 2008. "Adaptive synchronization between two complex networks with nonidentical topological structures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(22), pages 5623-5630.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Suo, JingJing & Hu, Hongxiao & Xu, Liguang, 2023. "Delay-dependent impulsive control for lag quasi-synchronization of stochastic complex dynamical networks," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 211(C), pages 134-153.
    2. Sun, Ruyi & Chang, Jiaqi & Wang, Hongmei & Li, Miaomiao & Sun, Yongzheng, 2024. "Time and energy costs for synchronization of multi-layer networks," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 215(C), pages 440-455.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Han, Siyu & Hu, Cheng & Yu, Juan & Jiang, Haijun & Wen, Shiping, 2021. "Stabilization of inertial Cohen-Grossberg neural networks with generalized delays: A direct analysis approach," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    2. Pharunyou Chanthorn & Grienggrai Rajchakit & Sriraman Ramalingam & Chee Peng Lim & Raja Ramachandran, 2020. "Robust Dissipativity Analysis of Hopfield-Type Complex-Valued Neural Networks with Time-Varying Delays and Linear Fractional Uncertainties," Mathematics, MDPI, vol. 8(4), pages 1-22, April.
    3. Zhang, Hai & Cheng, Yuhong & Zhang, Hongmei & Zhang, Weiwei & Cao, Jinde, 2022. "Hybrid control design for Mittag-Leffler projective synchronization on FOQVNNs with multiple mixed delays and impulsive effects," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 197(C), pages 341-357.
    4. Wang, Shuzhan & Zhang, Ziye & Lin, Chong & Chen, Jian, 2021. "Fixed-time synchronization for complex-valued BAM neural networks with time-varying delays via pinning control and adaptive pinning control," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    5. Li, Yongkun & Wang, Xiaohui, 2021. "Almost periodic solutions in distribution of Clifford-valued stochastic recurrent neural networks with time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    6. Tai, Weipeng & Zuo, Dandan & Xuan, Zuxing & Zhou, Jianping & Wang, Zhen, 2021. "Non-fragile L2−L∞ filtering for a class of switched neural networks," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 185(C), pages 629-645.
    7. Li, Hui & Kao, Yonggui & Li, Hong-Li, 2021. "Globally β-Mittag-Leffler stability and β-Mittag-Leffler convergence in Lagrange sense for impulsive fractional-order complex-valued neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    8. Geng, Liang & Xiao, Renbin, 2017. "Outer synchronization and parameter identification approach to the resilient recovery of supply network with uncertainty," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 482(C), pages 407-421.
    9. Chien, Fengsheng & Inc, Mustafa & Yosefzade, Hamidreza & Saberi Nik, Hassan, 2021. "Predicting the chaos and solution bounds in a complex dynamical system," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    10. Pan, Jinsong & Zhang, Zhengqiu, 2021. "Finite-time synchronization for delayed complex-valued neural networks via the exponential-type controllers of time variable," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    11. Wang, Guanjun & Cao, Jinde & Lu, Jianquan, 2010. "Outer synchronization between two nonidentical networks with circumstance noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(7), pages 1480-1488.
    12. Wang, Fen & Chen, Yuanlong, 2021. "Mean square exponential stability for stochastic memristor-based neural networks with leakage delay," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    13. Barajas-Ramírez, Juan Gonzalo & Ruiz-Silva, Adriana & Anzo-Hernández, Andrés, 2021. "Pinning generalized synchronization of dynamical networks via coordinate transformations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 1164-1175.
    14. Pharunyou Chanthorn & Grienggrai Rajchakit & Jenjira Thipcha & Chanikan Emharuethai & Ramalingam Sriraman & Chee Peng Lim & Raja Ramachandran, 2020. "Robust Stability of Complex-Valued Stochastic Neural Networks with Time-Varying Delays and Parameter Uncertainties," Mathematics, MDPI, vol. 8(5), pages 1-19, May.
    15. Ren, Lei & Lin, Ming-Hung & Abdulwahab, Abdulkareem & Ma, Jun & Saberi-Nik, Hassan, 2023. "Global dynamical analysis of the integer and fractional 4D hyperchaotic Rabinovich system," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    16. Yi Liang & Yunyun Deng & Chuan Zhang, 2023. "Outer Synchronization of Two Muti-Layer Dynamical Complex Networks with Intermittent Pinning Control," Mathematics, MDPI, vol. 11(16), pages 1-15, August.
    17. J. Humberto Pérez-Cruz, 2018. "Stabilization and Synchronization of Uncertain Zhang System by Means of Robust Adaptive Control," Complexity, Hindawi, vol. 2018, pages 1-19, December.
    18. Liu, Meng & Shao, Yingying & Fu, Xinchu, 2009. "Complete synchronization on multi-layer center dynamical networks," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2584-2591.
    19. Chengqiang Wang & Xiangqing Zhao & Can Wang & Zhiwei Lv, 2023. "Synchronization of Takagi–Sugeno Fuzzy Time-Delayed Stochastic Bidirectional Associative Memory Neural Networks Driven by Brownian Motion in Pre-Assigned Settling Time," Mathematics, MDPI, vol. 11(17), pages 1-32, August.
    20. Sun, Ruyi & Chang, Jiaqi & Wang, Hongmei & Li, Miaomiao & Sun, Yongzheng, 2024. "Time and energy costs for synchronization of multi-layer networks," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 215(C), pages 440-455.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:187:y:2021:i:c:p:379-390. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.