IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v161y2022ics0960077922005203.html

A compartmental model for cyber-epidemics

Author

Listed:
  • Aleja, D.
  • Contreras-Aso, G.
  • Alfaro-Bittner, K.
  • Primo, E.
  • Criado, R.
  • Romance, M.
  • Boccaletti, S.

Abstract

In our more and more interconnected world, a specific risk is that of a cyber-epidemic (or cyber-pandemic), produced either accidentally or intentionally, where a cyber virus propagates from device to device up to undermining the global Internet system with devastating consequences in terms of economic costs and societal harms related to the shutdown of essential services. We introduce a compartmental model for studying the spreading of a malware and of the awareness of its incidence through different waves which are evolving on top of the same graph structure (the global network of connected devices). This is realized by considering vectorial compartments made of two components, the first being descriptive of the state of the device with respect to the new malware's propagation, and the second accounting for the awareness of the device's user about the presence of the cyber threat. By introducing suitable transition rates between such compartments, one can then follow the evolution of a cyber-epidemic from the moment at which a new virus is seeded in the network, up to when a given user realizes that his/her device has suffered a damage and consequently starts a wave of awareness which eventually ends up with the development of a proper antivirus software. We then compare the overall damage that a malware is able to produce in Erdős-Rényi and scale-free network architectures for both the case in which the virus is causing a fixed damage on each device and the case where, instead, the virus is engineered to mutate while replicating from device to device. Our result constitutes actually the attempt to build a specific compartmental model whose variables and parameters are entirely customized for describing cyber-epidemics.

Suggested Citation

  • Aleja, D. & Contreras-Aso, G. & Alfaro-Bittner, K. & Primo, E. & Criado, R. & Romance, M. & Boccaletti, S., 2022. "A compartmental model for cyber-epidemics," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
  • Handle: RePEc:eee:chsofr:v:161:y:2022:i:c:s0960077922005203
    DOI: 10.1016/j.chaos.2022.112310
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077922005203
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2022.112310?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Wanping & Zhong, Shouming, 2018. "A novel dynamic model for web malware spreading over scale-free networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 848-863.
    2. Boccaletti, Stefano & Mindlin, Gabriel & Ditto, William & Atangana, Abdon, 2020. "Closing editorial: Forecasting of epidemic spreading: lessons learned from the current covid-19 pandemic," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    3. Hosseini, Soodeh & Azgomi, Mohammad Abdollahi, 2018. "The dynamics of an SEIRS-QV malware propagation model in heterogeneous networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 803-817.
    4. Réka Albert & Hawoong Jeong & Albert-László Barabási, 2000. "Error and attack tolerance of complex networks," Nature, Nature, vol. 406(6794), pages 378-382, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wenjia Liu & Jian Wang & Yanfeng Ouyang, 2022. "Rumor Transmission in Online Social Networks Under Nash Equilibrium of a Psychological Decision Game," Networks and Spatial Economics, Springer, vol. 22(4), pages 831-854, December.
    2. Sang, Chun-Yan & Liao, Shi-Gen, 2020. "Modeling and simulation of information dissemination model considering user’s awareness behavior in mobile social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    3. Dong, Keqiang & Zhang, Hong & Gao, You, 2017. "Dynamical mechanism in aero-engine gas path system using minimum spanning tree and detrended cross-correlation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 363-369.
    4. Wang, Wei & Cai, Meng & Zheng, Muhua, 2018. "Social contagions on correlated multiplex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 499(C), pages 121-128.
    5. Bokwon Lee & Kyu-Min Lee & Jae-Suk Yang, 2019. "Network structure reveals patterns of legal complexity in human society: The case of the Constitutional legal network," PLOS ONE, Public Library of Science, vol. 14(1), pages 1-15, January.
    6. repec:plo:pone00:0008001 is not listed on IDEAS
    7. Gao, Yan-Li & Chen, Shi-Ming & Nie, Sen & Ma, Fei & Guan, Jun-Jie, 2018. "Robustness analysis of interdependent networks under multiple-attacking strategies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 495-504.
    8. Sergi Lozano & Alexandre Arenas, 2007. "A Model to Test How Diversity Affects Resilience in Regional Innovation Networks," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 10(4), pages 1-8.
    9. Sanjeev Goyal & Fernando Vega-Redondo, 2000. "Learning, Network Formation and Coordination," Econometric Society World Congress 2000 Contributed Papers 0113, Econometric Society.
    10. Dan Braha & Yaneer Bar-Yam, 2007. "The Statistical Mechanics of Complex Product Development: Empirical and Analytical Results," Management Science, INFORMS, vol. 53(7), pages 1127-1145, July.
    11. Quayle, A.P. & Siddiqui, A.S. & Jones, S.J.M., 2006. "Preferential network perturbation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 371(2), pages 823-840.
    12. Chen, Lei & Yue, Dong & Dou, Chunxia, 2019. "Optimization on vulnerability analysis and redundancy protection in interdependent networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1216-1226.
    13. Fu, Minglei & Feng, Jun & Lande, Dmytro & Dmytrenko, Oleh & Manko, Dmytro & Prakapovich, Ryhor, 2021. "Dynamic model with super spreaders and lurker users for preferential information propagation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 561(C).
    14. Stefano Martinazzi & Andrea Flori, 2020. "The evolving topology of the Lightning Network: Centralization, efficiency, robustness, synchronization, and anonymity," PLOS ONE, Public Library of Science, vol. 15(1), pages 1-18, January.
    15. Bálint Mészáros & István Simon & Zsuzsanna Dosztányi, 2009. "Prediction of Protein Binding Regions in Disordered Proteins," PLOS Computational Biology, Public Library of Science, vol. 5(5), pages 1-18, May.
    16. Yicheol Han & Stephan J Goetz, 2019. "Measuring network rewiring over time," PLOS ONE, Public Library of Science, vol. 14(7), pages 1-13, July.
    17. Mao, Liang & Yang, Yan, 2012. "Coupling infectious diseases, human preventive behavior, and networks – A conceptual framework for epidemic modeling," Social Science & Medicine, Elsevier, vol. 74(2), pages 167-175.
    18. Irina Rish & Guillermo Cecchi & Benjamin Thyreau & Bertrand Thirion & Marion Plaze & Marie Laure Paillere-Martinot & Catherine Martelli & Jean-Luc Martinot & Jean-Baptiste Poline, 2013. "Schizophrenia as a Network Disease: Disruption of Emergent Brain Function in Patients with Auditory Hallucinations," PLOS ONE, Public Library of Science, vol. 8(1), pages 1-15, January.
    19. Samuel F Rosenblatt & Jeffrey A Smith & G Robin Gauthier & Laurent Hébert-Dufresne, 2020. "Immunization strategies in networks with missing data," PLOS Computational Biology, Public Library of Science, vol. 16(7), pages 1-21, July.
    20. Ai, Jun & He, Tao & Su, Zhan, 2023. "Identifying influential nodes in complex networks based on resource allocation similarity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 627(C).
    21. Ixandra Achitouv, 2025. "Dynamical analysis of financial stocks network: Improving forecasting using network properties," PLOS ONE, Public Library of Science, vol. 20(5), pages 1-23, May.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:161:y:2022:i:c:s0960077922005203. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.