IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v160y2022ics0960077922004878.html
   My bibliography  Save this article

Cooperation in the jaywalking dilemma of a road public good due to points guidance

Author

Listed:
  • Sun, Qipeng
  • Liu, Hang
  • Wang, Yongjie
  • Li, Qiong
  • Chen, Wenqiang
  • Bai, Pengxia
  • Xue, Chenlei

Abstract

Jaywalking is a dangerous illegal crossing behavior, which is common but difficult to govern. If road is a kind of public goods, jaywalking can be regarded as a completely uncooperative behavior in the game of the public goods. Jaywalking is a relatively broad concept, which includes both the behaviors of pedestrians running a red light at the crosswalks and the behaviors of pedestrians directly crossing the road regardless of the traffic rules outside the crosswalks. At the same time, the traffic signal settings in the road network include both the signal lights at the intersections and the signal lights in the mid-roadways. The jaywalking behavior outside the crosswalks in the mid-roadways may be more common and difficult to govern due to the lack of management. Therefore, this study aims at the governance of jaywalking behaviors outside the crosswalks in the mid-roadways. Clearly, time pressure has a huge impact on crossing decision-making processes of pedestrians, and even causes pedestrians to fall into a jaywalking dilemma. The points decision-making guidance mechanism (PDGM) established by us is proposed based on a crossing decision-making model and a points guidance system in this problem-oriented context, which takes time pressure as an important factor. The points rules that the points guidance system relies on mainly apply the Elo algorithm to realize the automatic update of the points. The decision-making processes of pedestrians crossing the road can be positively influenced by the PDGM, which adopts a multi-factor crossing decision-making model. Since our PDGM is an innovative soft strategy based on the development of future intelligent transportation systems, which has not yet been established, so the introduction of a simulation modeling method is very necessary. In particular, this paper establishes an agent-based model to describe the effects of various aspects of the PGDM, and further verifies its effectiveness and feasibility with quantitative methods. The PDGM is beneficial to reduce jaywalking behaviors of pedestrians and effectively promote cooperation between pedestrians and traffic rules. The establishment of the PDGM has been proved to be feasible and effective, which can significantly promote legal crossing and improve the level of crossing safety without affecting the operating efficiency of vehicles by a simulation modeling method. The PDGM, which achieves a good performance, can be pioneered and applied to induce pedestrians to cross the road cooperatively and legally. What's more, the PDGM has been proved to be effective and has great potential to be applied to more traffic scenarios. In summary, it is conducive to urban traffic road more efficient and safer through the study of the points guidance mechanism for pedestrians.

Suggested Citation

  • Sun, Qipeng & Liu, Hang & Wang, Yongjie & Li, Qiong & Chen, Wenqiang & Bai, Pengxia & Xue, Chenlei, 2022. "Cooperation in the jaywalking dilemma of a road public good due to points guidance," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
  • Handle: RePEc:eee:chsofr:v:160:y:2022:i:c:s0960077922004878
    DOI: 10.1016/j.chaos.2022.112277
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077922004878
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2022.112277?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Szolnoki, Attila & Chen, Xiaojie, 2022. "Tactical cooperation of defectors in a multi-stage public goods game," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    2. Li, Yang & Chen, Maoyin & Zheng, Xiaoping & Dou, Zhan & Cheng, Yuan, 2020. "Relationship between behavior aggressiveness and pedestrian dynamics using behavior-based cellular automata model," Applied Mathematics and Computation, Elsevier, vol. 371(C).
    3. Wang, Mie & Kang, HongWei & Shen, Yong & Sun, XingPing & Chen, QingYi, 2021. "The role of alliance cooperation in spatial public goods game," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    4. Rouwendal, Jan & Verhoef, Erik T., 2006. "Basic economic principles of road pricing: From theory to applications," Transport Policy, Elsevier, vol. 13(2), pages 106-114, March.
    5. Wang, Le & Chen, Tong & Wu, Zhenghong, 2021. "Promoting cooperation by reputation scoring mechanism based on historical donations in public goods game," Applied Mathematics and Computation, Elsevier, vol. 390(C).
    6. Wang, Le & Chen, Tong & You, Xinshang & Wang, Yongjie, 2018. "The effect of wealth-based anti-expectation behaviors on public cooperation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 493(C), pages 84-93.
    7. Chen, Qiao & Chen, Tong & Wang, Yongjie, 2017. "Publishing the donation list incompletely promotes the emergence of cooperation in public goods game," Applied Mathematics and Computation, Elsevier, vol. 310(C), pages 48-56.
    8. Li, Yaping & Guo, Yuntao & Lu, Jian & Peeta, Srinivas, 2019. "Impacts of congestion pricing and reward strategies on automobile travelers’ morning commute mode shift decisions," Transportation Research Part A: Policy and Practice, Elsevier, vol. 125(C), pages 72-88.
    9. Wang, Yongjie & Chen, Tong, 2015. "Heuristics guide cooperative behaviors in public goods game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 439(C), pages 59-65.
    10. Wang, Hua & Meng, Qiang & Chen, Shukai & Zhang, Xiaoning, 2021. "Competitive and cooperative behaviour analysis of connected and autonomous vehicles across unsignalised intersections: A game-theoretic approach," Transportation Research Part B: Methodological, Elsevier, vol. 149(C), pages 322-346.
    11. Wang, Yongjie & Yao, Zhouzhou & Wang, Chao & Ren, Jiale & Chen, Qiao, 2020. "The impact of intelligent transportation points system based on Elo rating on emergence of cooperation at Y intersection," Applied Mathematics and Computation, Elsevier, vol. 370(C).
    12. Wang, Yongjie & Shen, Binchang & Wu, Hao & Wang, Chao & Su, Qian & Chen, Wenqiang, 2021. "Modeling illegal pedestrian crossing behaviors at unmarked mid-block roadway based on extended decision field theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 562(C).
    13. Chen, Qiao & Chen, Tong & Wang, Yongjie, 2019. "Cleverly handling the donation information can promote cooperation in public goods game," Applied Mathematics and Computation, Elsevier, vol. 346(C), pages 363-373.
    14. Sun, Qipeng & He, Chen & Wang, Yongjie & Liu, Hang & Ma, Fei & Wei, Xiao, 2022. "Reducing violation behaviors of pedestrians considering group interests of travelers at signalized crosswalk," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 594(C).
    15. Ma, Xiaojian & Quan, Ji & Wang, Xianjia, 2021. "Effect of reputation-based heterogeneous investment on cooperation in spatial public goods game," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Chaoqian & Szolnoki, Attila, 2022. "Involution game with spatio-temporal heterogeneity of social resources," Applied Mathematics and Computation, Elsevier, vol. 430(C).
    2. Wang, Yongjie & Yao, Zhouzhou & Wang, Chao & Ren, Jiale & Chen, Qiao, 2020. "The impact of intelligent transportation points system based on Elo rating on emergence of cooperation at Y intersection," Applied Mathematics and Computation, Elsevier, vol. 370(C).
    3. Zhenghong Wu & Huan Huang & Qinghu Liao, 2021. "The study on the role of dedicators on promoting cooperation in public goods game," PLOS ONE, Public Library of Science, vol. 16(9), pages 1-17, September.
    4. Chen, Qiao & Chen, Tong & Wang, Yongjie, 2019. "Cleverly handling the donation information can promote cooperation in public goods game," Applied Mathematics and Computation, Elsevier, vol. 346(C), pages 363-373.
    5. Yang, Ran & Chen, Tong & Chen, Qiao, 2018. "The impact of lotteries on cooperation in the public goods game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 925-934.
    6. Sun, Qipeng & Cheng, Qianqian & Wang, Yongjie & Li, Tao & Ma, Fei & Yao, Zhigang, 2022. "Zip-merging behavior at Y-intersection based on intelligent travel points," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 593(C).
    7. Chen, Binbin & Li, Wei, 2022. "Improving highway traffic performance: Merging pattern design of a departure zone after tollbooths or ETC," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P1).
    8. Wang, Chaoqian & Sun, Chengbin, 2023. "Public goods game across multilayer populations with different densities," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    9. Sun, Qipeng & He, Chen & Wang, Yongjie & Liu, Hang & Ma, Fei & Wei, Xiao, 2022. "Reducing violation behaviors of pedestrians considering group interests of travelers at signalized crosswalk," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 594(C).
    10. Zhang, Xiaoyang & Chen, Tong & Chen, Qiao & Li, Xueya, 2020. "Increasing pool funds in public goods: The effects of deposit-based delayed rewards," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    11. Wang, Chaoqian & Lin, Zongzhe & Rothman, Dale S., 2022. "Public goods game on coevolving networks driven by the similarity and difference of payoff," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    12. Zhenghong Wu & Yang Sun, 2022. "How to Treat Gossip in Internet Public Carbon Emission Reduction Projects?," Sustainability, MDPI, vol. 14(19), pages 1-16, October.
    13. Wang, Le & Chen, Tong & You, Xinshang & Wang, Yongjie, 2018. "The effect of wealth-based anti-expectation behaviors on public cooperation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 493(C), pages 84-93.
    14. Marco Percoco, 2010. "Urban Transport Policies And The Environment: Evidence From Italy," Articles, International Journal of Transport Economics, vol. 37(2).
    15. Dogterom, Nico & Ettema, Dick & Dijst, Martin, 2018. "Behavioural effects of a tradable driving credit scheme: Results of an online stated adaptation experiment in the Netherlands," Transportation Research Part A: Policy and Practice, Elsevier, vol. 107(C), pages 52-64.
    16. Ziyi Chen & Kaiyan Dai & Xing Jin & Liqin Hu & Yongheng Wang, 2023. "Aspiration-Based Learning in k -Hop Best-Shot Binary Networked Public Goods Games," Mathematics, MDPI, vol. 11(14), pages 1-19, July.
    17. Quan, Ji & Yang, Xiukang & Wang, Xianjia, 2018. "Spatial public goods game with continuous contributions based on Particle Swarm Optimization learning and the evolution of cooperation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 973-983.
    18. Palma, André de & Lindsey, Robin & Proost, Stef, 2006. "Research challenges in modelling urban road pricing: An overview," Transport Policy, Elsevier, vol. 13(2), pages 97-105, March.
    19. Liu, Linjie & Chen, Xiaojie, 2022. "Effects of interconnections among corruption, institutional punishment, and economic factors on the evolution of cooperation," Applied Mathematics and Computation, Elsevier, vol. 425(C).
    20. Quan, Ji & Cui, Shihui & Chen, Wenman & Wang, Xianjia, 2023. "Reputation-based probabilistic punishment on the evolution of cooperation in the spatial public goods game," Applied Mathematics and Computation, Elsevier, vol. 441(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:160:y:2022:i:c:s0960077922004878. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.