IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v156y2022ics0960077922000650.html
   My bibliography  Save this article

Dynamical behavior and optimal control of a stochastic mathematical model for cholera

Author

Listed:
  • Zhou, Xueyong
  • Shi, Xiangyun
  • Wei, Ming

Abstract

A stochastic cholera model with saturation recovery rate is discussed. Firstly, the existence and uniqueness of the global positive solution of the system are proved. Secondly, the asymptotic behavior of the solutions of the stochastic cholera model near the disease-free equilibrium and the corresponding deterministic endemic equilibrium is discussed. Then, the phenomenon that the large noise can cause the extinction of cholera is obtained. Furthermore, on the basis of the stochastic model, the optimal control is added and studied to provide a theoretical basis for the prevention and control of cholera. Finally, the theoretical results are verified by numerical simulations and some suggestions on how to better control the disease are presented.

Suggested Citation

  • Zhou, Xueyong & Shi, Xiangyun & Wei, Ming, 2022. "Dynamical behavior and optimal control of a stochastic mathematical model for cholera," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
  • Handle: RePEc:eee:chsofr:v:156:y:2022:i:c:s0960077922000650
    DOI: 10.1016/j.chaos.2022.111854
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077922000650
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2022.111854?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jing'an Cui & Zhanmin Wu & Xueyong Zhou, 2014. "Mathematical Analysis of a Cholera Model with Vaccination," Journal of Applied Mathematics, Hindawi, vol. 2014, pages 1-16, February.
    2. Liu, Qun & Jiang, Daqing & Shi, Ningzhong & Hayat, Tasawar & Alsaedi, Ahmed, 2016. "Asymptotic behavior of a stochastic delayed SEIR epidemic model with nonlinear incidence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 870-882.
    3. O. Chichigina, 2008. "Noise with memory as a model of lemming cycles," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 65(3), pages 347-352, October.
    4. Ruimin Xu & Rongwei Guo, 2020. "Pontryagin’s Maximum Principle for Optimal Control of Stochastic SEIR Models," Complexity, Hindawi, vol. 2020, pages 1-5, October.
    5. Liu, Qun & Jiang, Daqing & Shi, Ningzhong & Hayat, Tasawar & Alsaedi, Ahmed, 2018. "The threshold of a stochastic SIS epidemic model with imperfect vaccination," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 144(C), pages 78-90.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xueyong Zhou, 2022. "Dynamical Analysis of a Stochastic Cholera Epidemic Model," Mathematics, MDPI, vol. 10(16), pages 1-19, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hattaf, Khalid & Mahrouf, Marouane & Adnani, Jihad & Yousfi, Noura, 2018. "Qualitative analysis of a stochastic epidemic model with specific functional response and temporary immunity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 591-600.
    2. Cao, Zhongwei & Shi, Yuee & Wen, Xiangdan & Liu, Liya & Hu, Jingwei, 2020. "Analysis of a hybrid switching SVIR epidemic model with vaccination and Lévy noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    3. Vladislav Soukhovolsky & Anton Kovalev & Yulia Ivanova & Olga Tarasova, 2023. "Autoregression, First Order Phase Transition, and Stochastic Resonance: A Comparison of Three Models for Forest Insect Outbreaks," Mathematics, MDPI, vol. 11(19), pages 1-19, October.
    4. Serrano, Daniel Hernández & Villarroel, Javier & Hernández-Serrano, Juan & Tocino, Ángel, 2023. "Stochastic simplicial contagion model," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    5. Wen, Buyu & Teng, Zhidong & Li, Zhiming, 2018. "The threshold of a periodic stochastic SIVS epidemic model with nonlinear incidence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 532-549.
    6. Liu, Chao & Yu, Longfei & Zhang, Qingling & Li, Yuanke, 2018. "Dynamic analysis of a hybrid bioeconomic plankton system with double time delays and stochastic fluctuations," Applied Mathematics and Computation, Elsevier, vol. 316(C), pages 115-137.
    7. Sun, Shulin & Zhang, Xiaofeng, 2018. "Asymptotic behavior of a stochastic delayed chemostat model with nonmonotone uptake function," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 38-56.
    8. Meng, Lan & Zhu, Wei, 2022. "Analysis of SEIR epidemic patch model with nonlinear incidence rate, vaccination and quarantine strategies," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 200(C), pages 489-503.
    9. Xueyong Zhou, 2022. "Dynamical Analysis of a Stochastic Cholera Epidemic Model," Mathematics, MDPI, vol. 10(16), pages 1-19, August.
    10. Fan, Kuangang & Zhang, Yan & Gao, Shujing & Chen, Shihua, 2020. "A delayed vaccinated epidemic model with nonlinear incidence rate and Lévy jumps," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 544(C).
    11. Salah Abuasad & Ahmet Yildirim & Ishak Hashim & Samsul Ariffin Abdul Karim & J.F. Gómez-Aguilar, 2019. "Fractional Multi-Step Differential Transformed Method for Approximating a Fractional Stochastic SIS Epidemic Model with Imperfect Vaccination," IJERPH, MDPI, vol. 16(6), pages 1-15, March.
    12. Shibing You & Hengli Wang & Miao Zhang & Haitao Song & Xiaoting Xu & Yongzeng Lai, 2020. "Assessment of monthly economic losses in Wuhan under the lockdown against COVID-19," Palgrave Communications, Palgrave Macmillan, vol. 7(1), pages 1-12, December.
    13. Sharma, Natasha & Gupta, Arvind Kumar, 2017. "Impact of time delay on the dynamics of SEIR epidemic model using cellular automata," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 114-125.
    14. Verma, Tina & Gupta, Arvind Kumar, 2020. "Mean-field dispersal induced synchrony and stability in an epidemic model under patchy environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
    15. Maria Gamboa & Maria Jesus Lopez-Herrero, 2020. "The Effect of Setting a Warning Vaccination Level on a Stochastic SIVS Model with Imperfect Vaccine," Mathematics, MDPI, vol. 8(7), pages 1-23, July.
    16. Liu, Chao & Wang, Luping & Zhang, Qingling & Li, Yuanke, 2018. "Modeling and dynamical analysis of a triple delayed prey–predator–scavenger system with Lévy jumps," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 1216-1239.
    17. Xin, Ming-Zhen & Wang, Bin-Guo, 2020. "Stationary distribution and extinction of a stochastic tuberculosis model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    18. Chichigina, Olga A. & Valenti, Davide, 2021. "Strongly super-Poisson statistics replaced by a wide-pulse Poisson process: The billiard random generator," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    19. Meng, Xinzhu & Li, Fei & Gao, Shujing, 2018. "Global analysis and numerical simulations of a novel stochastic eco-epidemiological model with time delay," Applied Mathematics and Computation, Elsevier, vol. 339(C), pages 701-726.
    20. Zhang, Beibei & Wang, Hangying & Lv, Guangying, 2018. "Exponential extinction of a stochastic predator–prey model with Allee effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 192-204.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:156:y:2022:i:c:s0960077922000650. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.