IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v193y2025ics0960077925000955.html
   My bibliography  Save this article

Higher-order rumor and anti-rumor propagation and data-driven optimal control on hypergraphs

Author

Listed:
  • Zhong, Xiaojing
  • Luo, Chaolong
  • Zhang, Jing
  • Liu, Guiyun

Abstract

To address the “explosive” propagation phenomenon in social networks, we propose a novel hypergraph propagation model that captures the higher-order interaction process between rumor and anti-rumor. By calculating the propagation threshold and analyzing the global stability of equilibrium points, our research indicates that the higher-order structure is a component of the propagation threshold, directly affecting the final state of the propagation dynamics. Additionally, we design data-driven control algorithms, which integrates deep neural networks and ensemble learning algorithms, to autonomously seek suboptimal control strategies for rumor within the framework of optimal control theory. This approach enhances the efficiency and adaptability of traditional control methods. Simulation experiments demonstrate that the control algorithm effectively regulates rumor propagation, achieving a control cost deviation of only 0.0016 from the optimal control theory, while substantially improving the control speed compared to conventional methods.

Suggested Citation

  • Zhong, Xiaojing & Luo, Chaolong & Zhang, Jing & Liu, Guiyun, 2025. "Higher-order rumor and anti-rumor propagation and data-driven optimal control on hypergraphs," Chaos, Solitons & Fractals, Elsevier, vol. 193(C).
  • Handle: RePEc:eee:chsofr:v:193:y:2025:i:c:s0960077925000955
    DOI: 10.1016/j.chaos.2025.116082
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077925000955
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2025.116082?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Fu, Xinjie & Wang, JinRong, 2024. "Dynamic behaviors and non-instantaneous impulsive vaccination of an SAIQR model on complex networks," Applied Mathematics and Computation, Elsevier, vol. 465(C).
    2. Zhou, Xueyong & Shi, Xiangyun & Wei, Ming, 2022. "Dynamical behavior and optimal control of a stochastic mathematical model for cholera," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    3. Zhang, Ziyu & Mei, Xuehui & Jiang, Haijun & Luo, Xupeng & Xia, Yang, 2023. "Dynamical analysis of Hyper-SIR rumor spreading model," Applied Mathematics and Computation, Elsevier, vol. 446(C).
    4. Tan, Jipeng & Zhang, Man & Liu, Fengming, 2024. "Online-Offline Higher-Order Rumor Propagation Model Based on Quantum Cellular Automata Considering Social Adaptation," Applied Mathematics and Computation, Elsevier, vol. 461(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pan, Yuxuan & Zhu, Linhe, 2024. "Parameter identification method of information propagation models based on different network structures," Chaos, Solitons & Fractals, Elsevier, vol. 185(C).
    2. Mukhtar, Roshana & Chang, Chuan-Yu & Raja, Muhammad Asif Zahoor & Chaudhary, Naveed Ishtiaq & Shu, Chi-Min, 2024. "Novel nonlinear fractional order Parkinson's disease model for brain electrical activity rhythms: Intelligent adaptive Bayesian networks," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    3. Tan, Jipeng & Zhang, Man & Liu, Fengming, 2024. "Online-Offline Higher-Order Rumor Propagation Model Based on Quantum Cellular Automata Considering Social Adaptation," Applied Mathematics and Computation, Elsevier, vol. 461(C).
    4. Xiaojing Zhong & Yawen Zheng & Junxian Xie & Ying Xie & Yuqing Peng, 2024. "Multi-Agent Collaborative Rumor-Debunking Strategies on Virtual-Real Network Layer," Mathematics, MDPI, vol. 12(3), pages 1-22, January.
    5. Zhu, Linhe & Chen, Siyi & Shen, Shuling, 2024. "Pattern dynamics analysis of a reaction–diffusion network propagation model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 220(C), pages 425-444.
    6. Guanghui Yan & Jie Tang & Huayan Pei & Wenwen Chang, 2024. "Research on rumor propagation and rumor refutation strategies in complex network environment," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 97(9), pages 1-12, September.
    7. Mandal, Sayan & Samanta, Sudip & Tiwari, Pankaj Kumar & Upadhyay, Ranjit Kumar, 2025. "Bifurcation analysis and exploration of noise-induced transitions of a food chain model with Allee effect," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 228(C), pages 313-338.
    8. Tian, Yang & Tian, Hui & Cui, Qimei & Zhu, Xuzhen, 2024. "Phase transition phenomena in social propagation with dynamic fashion tendency and individual contact," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    9. Wang, Wenhui & Zhang, Juping & Jin, Zhen, 2024. "Dynamics of SIS epidemic model in heterogeneous hypernetworks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 655(C).
    10. Xueyong Zhou, 2022. "Dynamical Analysis of a Stochastic Cholera Epidemic Model," Mathematics, MDPI, vol. 10(16), pages 1-19, August.
    11. You, Xuemei & Fan, Xiaonan & Ma, Yinghong & Liu, Zhiyuan & Zhang, Ruifeng, 2024. "Impact of message fatigue in information-disease coupled dynamics on temporal simplicial networks," Applied Mathematics and Computation, Elsevier, vol. 479(C).
    12. Khatun, Mst Sebi & Mahato, Kiriti Bhusan & Das, Pritha, 2024. "Dynamics of an SuSaV IR epidemic model with stochastic optimal control and awareness programs," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
    13. Shenxing Li & Wenhe Li, 2024. "Dynamical Behaviors of a Stochastic Susceptible-Infected-Treated-Recovered-Susceptible Cholera Model with Ornstein-Uhlenbeck Process," Mathematics, MDPI, vol. 12(14), pages 1-20, July.
    14. Wang, Zhishuang & Wan, Yicong & Yin, Qian & Hong, Zhiyong & Xu, Qiuxia & Xia, Chengyi, 2025. "Coupled diffusion dynamics of competitive information and green behaviors on multiplex networks under policy intervention," Applied Mathematics and Computation, Elsevier, vol. 495(C).
    15. Du, Kang & Fan, Ruguo & Wang, Dongxue & Xie, Xiao & Xu, Xiaoxia & Lin, Jinchai, 2025. "Competitive information spreading model in two-layer networks considering dual debunking mechanisms and time lag effects," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 665(C).
    16. Shan Yang & Shihan Liu & Kaijun Su & Jianhong Chen, 2024. "A Rumor Propagation Model Considering Media Effect and Suspicion Mechanism under Public Emergencies," Mathematics, MDPI, vol. 12(12), pages 1-23, June.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:193:y:2025:i:c:s0960077925000955. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.