IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v150y2021ics0960077921005038.html
   My bibliography  Save this article

Dark matter-wave gap solitons of Bose-Einstein condensates trapped in optical lattices with competing cubic-quintic nonlinearities

Author

Listed:
  • Chen, Junbo
  • Zeng, Jianhua

Abstract

Solitons are nonlinear self-sustained wave excitations and probably among the most interesting and exciting emergent nonlinear phenomenon in the corresponding theoretical settings. Bright solitons with sharp peak and dark solitons with central notch have been well known and observed in various nonlinear systems. The interplay of periodic potentials, like photonic crystals and lattices in optics and optical lattices in ultracold atoms, with the dispersion has brought about gap solitons within the finite band gaps of the underlying linear Bloch-wave spectrum and, particularly, the bright gap solitons have been experimentally observed in these nonlinear periodic systems, while little is known about the underlying physics of dark gap solitons. Here, we theoretically and numerically investigate the existence, property and stability of one-dimensional matter-wave gap solitons and soliton clusters of Bose-Einstein condensates trapped in optical lattices with competing cubic-quintic nonlinearity, the higher-order of which is self-defocusing and the lower-order (cubic) one is chosen as self-defocusing or focusing nonlinearities. By means of the conventional linear-stability analysis and direct numerical calculations with initial perturbations, we identify the stability and instability areas of the corresponding dark gap solitons and clusters ones.

Suggested Citation

  • Chen, Junbo & Zeng, Jianhua, 2021. "Dark matter-wave gap solitons of Bose-Einstein condensates trapped in optical lattices with competing cubic-quintic nonlinearities," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
  • Handle: RePEc:eee:chsofr:v:150:y:2021:i:c:s0960077921005038
    DOI: 10.1016/j.chaos.2021.111149
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077921005038
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2021.111149?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kevin E. Strecker & Guthrie B. Partridge & Andrew G. Truscott & Randall G. Hulet, 2002. "Formation and propagation of matter-wave soliton trains," Nature, Nature, vol. 417(6885), pages 150-153, May.
    2. Peng Wang & Yuanlin Zheng & Xianfeng Chen & Changming Huang & Yaroslav V. Kartashov & Lluis Torner & Vladimir V. Konotop & Fangwei Ye, 2020. "Localization and delocalization of light in photonic moiré lattices," Nature, Nature, vol. 577(7788), pages 42-46, January.
    3. D. Tanese & H. Flayac & D. Solnyshkov & A. Amo & A. Lemaître & E. Galopin & R. Braive & P. Senellart & I. Sagnes & G. Malpuech & J. Bloch, 2013. "Polariton condensation in solitonic gap states in a one-dimensional periodic potential," Nature Communications, Nature, vol. 4(1), pages 1-9, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Jiawei & Zhang, Yanpeng & Zeng, Jianhua, 2022. "Dark gap solitons in one-dimensional nonlinear periodic media with fourth-order dispersion," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    2. Liu, Dongshuai & Gao, Yanxia & Fan, Dianyuan & Zhang, Lifu, 2023. "Higher-charged vortex solitons in harmonic potential," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Xiuye & Zeng, Jianhua, 2022. "Overcoming the snaking instability and nucleation of dark solitons in nonlinear Kerr media by spatially inhomogeneous defocusing nonlinearity," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    2. Eric Cereceda-López & Alexander P. Antonov & Artem Ryabov & Philipp Maass & Pietro Tierno, 2023. "Overcrowding induces fast colloidal solitons in a slowly rotating potential landscape," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    3. Li, Jiawei & Zhang, Yanpeng & Zeng, Jianhua, 2022. "Dark gap solitons in one-dimensional nonlinear periodic media with fourth-order dispersion," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    4. Shi, Zeyun & Badshah, Fazal & Qin, Lu & Zhou, Yuan & Huang, Haibo & Zhang, Yong-Chang, 2023. "Spatially modulated control of pattern formation in a general nonlocal nonlinear system," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    5. Peng Wang & Qidong Fu & Ruihan Peng & Yaroslav V. Kartashov & Lluis Torner & Vladimir V. Konotop & Fangwei Ye, 2022. "Two-dimensional Thouless pumping of light in photonic moiré lattices," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    6. Xu, Si-Liu & Zhu, Min & Peng, Jia-Xin & Fan, Xi & Huang, Qi-Hong & Hua, Chun-Bo & Zhao, Yuan, 2023. "Light bullets in a nonlocal Rydberg medium with PT-symmetric moiré optical lattices," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    7. Hanyu Wang & Wei Xu & Zeyong Wei & Yiyuan Wang & Zhanshan Wang & Xinbin Cheng & Qinghua Guo & Jinhui Shi & Zhihong Zhu & Biao Yang, 2024. "Twisted photonic Weyl meta-crystals and aperiodic Fermi arc scattering," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    8. Liu, Xiuye & Zeng, Jianhua, 2023. "Matter-wave gap solitons and vortices of dense Bose–Einstein condensates in Moiré optical lattices," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    9. Malomed, Boris A. & Nascimento, V.A. & Adhikari, Sadhan K., 2009. "Gap solitons in fermion superfluids," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 80(4), pages 648-659.
    10. Triki, Houria & Choudhuri, Amitava & Zhou, Qin & Biswas, Anjan & Alshomrani, Ali Saleh, 2020. "Nonautonomous matter wave bright solitons in a quasi-1D Bose-Einstein condensate system with contact repulsion and dipole-dipole attraction," Applied Mathematics and Computation, Elsevier, vol. 371(C).
    11. Tiancheng Zhang & Kaichen Dong & Jiachen Li & Fanhao Meng & Jingang Li & Sai Munagavalasa & Costas P. Grigoropoulos & Junqiao Wu & Jie Yao, 2023. "Twisted moiré photonic crystal enabled optical vortex generation through bound states in the continuum," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    12. Liu, Xianglian & Li, Xiaoqiong & Li, Kaizhou & Zhou, Jie & Shi, Yuan & Chen, Jingdong, 2023. "Coexistence of Fano and electromagnetically induced transparency resonance line shapes in photonic topological insulators," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    13. Guoqiang Xu & Xue Zhou & Shuihua Yang & Jing Wu & Cheng-Wei Qiu, 2023. "Observation of bulk quadrupole in topological heat transport," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    14. Ma, Yu-Lan & Li, Bang-Qing, 2022. "Kraenkel-Manna-Merle saturated ferromagnetic system: Darboux transformation and loop-like soliton excitations," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    15. Ye, Zhi-Jiang & Chen, Yi-Xi & Zheng, Yi-Yin & Chen, Xiong-Wei & Liu, Bin, 2020. "Symmetry breaking of a matter-wave soliton in a double-well potential formed by spatially confined spin-orbit coupling," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    16. Chen, Zhiming & Wu, Zexing & Zeng, Jianhua, 2023. "Light gap bullets in defocusing media with optical lattices," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    17. Natanael Karjanto, 2022. "Bright Soliton Solution of the Nonlinear Schrödinger Equation: Fourier Spectrum and Fundamental Characteristics," Mathematics, MDPI, vol. 10(23), pages 1-22, December.
    18. Nader Mostaan & Fabian Grusdt & Nathan Goldman, 2022. "Quantized topological pumping of solitons in nonlinear photonics and ultracold atomic mixtures," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    19. Huang, Hao & Wang, Hongcheng & Chen, Manna & Lim, Chin Seong & Wong, Kok-Cheong, 2022. "Binary-vortex quantum droplets," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    20. Jung, Pawel S. & Pyrialakos, Georgios G. & Pilka, Jacek & Kwasny, Michal & Laudyn, Ula & Trippenbach, Marek & Christodoulides, Demetrios N. & Krolikowski, Wieslaw, 2023. "Stable fundamental two-dimensional solitons in media with competing nonlocal interactions," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:150:y:2021:i:c:s0960077921005038. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.