IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v122y2019icp189-195.html
   My bibliography  Save this article

Robustness analysis of partially interdependent networks with different coupling preferences and multicluster functional nodes in VCMS

Author

Listed:
  • Yin, Yong
  • Sa, Jiming
  • Liu, Qiong
  • Zhang, Chaoyong
  • Zhou, Jian

Abstract

Networks shaped by different cells of a Virtual Cellular Manufacturing System (VCMS) are partially interdependent, and some nodes not belonging to the Global Giant Component (GGC) can still remain functional. In this case, a model of a VCMS network is partly different from or beyond the consideration of those in past studies. In this paper, the robustness of the interdependent network is explored, which is more similar to that of a VCMS. A demonstrative process is provided, and the cascading process of a network under random attacks is analyzed. Numerical simulations for three types of coupled networks [BA (Barabási and Albert)–BA, BA–WS (Watts and Strogatz), and WS–WS] are performed to study the relationship of the robustness with the coupling strength and the GGC coefficient. Some findings are summarized as follows: (i) increasing the coupling strength between subnetworks may decrease the robustness of the interdependent network and lead to a transition from a second-order phase to a first-order phase; (ii) a small GGC coefficient can enhance the robustness of the interdependent network, and gradually increasing the GGC coefficient can result in a second-order phase transition, hybrid phase transition, and first-order phase transition; and (iii) the WS–BA coupled network is more vulnerable than the BA–BA network, but is more robust than the WS–WS network.

Suggested Citation

  • Yin, Yong & Sa, Jiming & Liu, Qiong & Zhang, Chaoyong & Zhou, Jian, 2019. "Robustness analysis of partially interdependent networks with different coupling preferences and multicluster functional nodes in VCMS," Chaos, Solitons & Fractals, Elsevier, vol. 122(C), pages 189-195.
  • Handle: RePEc:eee:chsofr:v:122:y:2019:i:c:p:189-195
    DOI: 10.1016/j.chaos.2019.03.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077918304569
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2019.03.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yandong Xiao & Songyang Lao & Lvlin Hou & Michael Small & Liang Bai, 2015. "Effects of Edge Directions on the Structural Controllability of Complex Networks," PLOS ONE, Public Library of Science, vol. 10(8), pages 1-15, August.
    2. Jin, Wei-Xin & Song, Ping & Liu, Guo-Zhu & Stanley, H. Eugene, 2015. "The cascading vulnerability of the directed and weighted network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 427(C), pages 302-325.
    3. Fu, Tao & Chen, Yini & Qin, Zhen & Guo, Liping, 2013. "Percolation on shopping and cashback electronic commerce networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(12), pages 2807-2820.
    4. Sergey V. Buldyrev & Roni Parshani & Gerald Paul & H. Eugene Stanley & Shlomo Havlin, 2010. "Catastrophic cascade of failures in interdependent networks," Nature, Nature, vol. 464(7291), pages 1025-1028, April.
    5. Ouyang, Min, 2014. "Review on modeling and simulation of interdependent critical infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 43-60.
    6. Zhao, Zhuang & Zhang, Peng & Yang, Hujiang, 2015. "Cascading failures in interconnected networks with dynamical redistribution of loads," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 433(C), pages 204-210.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shen, Yi & Ren, Gang & Zhang, Ning & Song, Guohao & Wang, Qin & Ran, Bin, 2020. "Effects of mutual traffic redistribution on robustness of interdependent networks to cascading failures under fluctuant load," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 560(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cui, Pengshuai & Zhu, Peidong & Shao, Chengcheng & Xun, Peng, 2017. "Cascading failures in interdependent networks due to insufficient received support capability," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 777-788.
    2. Zhu, Qian & Zhu, Zhiliang & Wang, Yifan & Yu, Hai, 2016. "Fuzzy-information-based robustness of interconnected networks against attacks and failures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 458(C), pages 194-203.
    3. Cui, Pengshuai & Zhu, Peidong & Wang, Ke & Xun, Peng & Xia, Zhuoqun, 2018. "Enhancing robustness of interdependent network by adding connectivity and dependence links," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 497(C), pages 185-197.
    4. Kazawa, Yui & Tsugawa, Sho, 2020. "Effectiveness of link-addition strategies for improving the robustness of both multiplex and interdependent networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    5. Monsalve, Mauricio & de la Llera, Juan Carlos, 2019. "Data-driven estimation of interdependencies and restoration of infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 181(C), pages 167-180.
    6. Liu, Huan & Tatano, Hirokazu & Pflug, Georg & Hochrainer-Stigler, Stefan, 2021. "Post-disaster recovery in industrial sectors: A Markov process analysis of multiple lifeline disruptions," Reliability Engineering and System Safety, Elsevier, vol. 206(C).
    7. Lu, Qing-Chang & Xu, Peng-Cheng & Zhao, Xiangmo & Zhang, Lei & Li, Xiaoling & Cui, Xin, 2022. "Measuring network interdependency between dependent networks: A supply-demand-based approach," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    8. Yang, Qihui & Scoglio, Caterina M. & Gruenbacher, Don M., 2021. "Robustness of supply chain networks against underload cascading failures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 563(C).
    9. Brunner, L.G. & Peer, R.A.M. & Zorn, C. & Paulik, R. & Logan, T.M., 2024. "Understanding cascading risks through real-world interdependent urban infrastructure," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    10. Wu, Baichao & Tang, Aiping & Wu, Jie, 2016. "Modeling cascading failures in interdependent infrastructures under terrorist attacks," Reliability Engineering and System Safety, Elsevier, vol. 147(C), pages 1-8.
    11. Wang, Shuliang & Zhang, Jianhua & Yue, Xin, 2018. "Multiple robustness assessment method for understanding structural and functional characteristics of the power network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 261-270.
    12. Almoghathawi, Yasser & Barker, Kash & Albert, Laura A., 2019. "Resilience-driven restoration model for interdependent infrastructure networks," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 12-23.
    13. Rachunok, Benjamin & Nateghi, Roshanak, 2020. "The sensitivity of electric power infrastructure resilience to the spatial distribution of disaster impacts," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    14. Wang, Weiping & Yang, Saini & Hu, Fuyu & Stanley, H. Eugene & He, Shuai & Shi, Mimi, 2018. "An approach for cascading effects within critical infrastructure systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 164-177.
    15. Zhang, Kaimin & Bai, Libiao & Xie, Xiaoyan & Wang, Chenshuo, 2023. "Modeling of risk cascading propagation in project portfolio network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 612(C).
    16. Kashin Sugishita & Yasuo Asakura, 2021. "Vulnerability studies in the fields of transportation and complex networks: a citation network analysis," Public Transport, Springer, vol. 13(1), pages 1-34, March.
    17. Shi, Xiaoqiu & Long, Wei & Li, Yanyan & Deng, Dingshan, 2022. "Robustness of interdependent supply chain networks against both functional and structural cascading failures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 586(C).
    18. Zhou, Shenghua & Yang, Yifan & Ng, S. Thomas & Xu, J. Frank & Li, Dezhi, 2020. "Integrating data-driven and physics-based approaches to characterize failures of interdependent infrastructures," International Journal of Critical Infrastructure Protection, Elsevier, vol. 31(C).
    19. Gao, Yanli & Chen, Shiming & Zhou, Jie & Zhang, Jingjing & Stanley, H.E., 2020. "Multiple phase transition in the non-symmetrical interdependent networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 556(C).
    20. Ouyang, Min & Pan, ZheZhe & Hong, Liu & He, Yue, 2015. "Vulnerability analysis of complementary transportation systems with applications to railway and airline systems in China," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 248-257.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:122:y:2019:i:c:p:189-195. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.