IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v111y2018icp227-234.html
   My bibliography  Save this article

The threshold of a stochastic delayed SIRS epidemic model with temporary immunity and vaccination

Author

Listed:
  • Xu, Changyong
  • Li, Xiaoyue

Abstract

A model of delayed stochastic SIRS type with temporary immunity and vaccination is investigated. The existence and uniqueness of the global positive solution of the model is proved. The threshold of the stochastic SIRS epidemic model is obtained. Compared with the corresponding deterministic model, the threshold affected by the white noise is smaller than the basic reproduction number R0 of the deterministic system. The vaccination immunity period can also affect the threshold of stochastic and deterministic model. Numerical simulations are carried out to support our theoretical results.

Suggested Citation

  • Xu, Changyong & Li, Xiaoyue, 2018. "The threshold of a stochastic delayed SIRS epidemic model with temporary immunity and vaccination," Chaos, Solitons & Fractals, Elsevier, vol. 111(C), pages 227-234.
  • Handle: RePEc:eee:chsofr:v:111:y:2018:i:c:p:227-234
    DOI: 10.1016/j.chaos.2017.12.027
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077917305350
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2017.12.027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lin, Yuguo & Jiang, Daqing & Wang, Shuai, 2014. "Stationary distribution of a stochastic SIS epidemic model with vaccination," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 394(C), pages 187-197.
    2. Zhao, Yanan & Jiang, Daqing & O’Regan, Donal, 2013. "The extinction and persistence of the stochastic SIS epidemic model with vaccination," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(20), pages 4916-4927.
    3. Xu, Rui & Ma, Zhien, 2009. "Stability of a delayed SIRS epidemic model with a nonlinear incidence rate," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2319-2325.
    4. Xiaohong Tian & Rui Xu, 2009. "Stability Analysis of a Delayed SIR Epidemic Model with Stage Structure and Nonlinear Incidence," Discrete Dynamics in Nature and Society, Hindawi, vol. 2009, pages 1-17, October.
    5. Li, Guihua & Wang, Wendi & Jin, Zhen, 2006. "Global stability of an SEIR epidemic model with constant immigration," Chaos, Solitons & Fractals, Elsevier, vol. 30(4), pages 1012-1019.
    6. Qixing Han & Daqing Jiang & Chengjun Yuan, 2013. "Extinction and Ergodic Property of Stochastic SIS Epidemic Model with Nonlinear Incidence Rate," Abstract and Applied Analysis, Hindawi, vol. 2013, pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Ge & Li, Zhiming & Din, Anwarud, 2022. "A stochastic SIQR epidemic model with Lévy jumps and three-time delays," Applied Mathematics and Computation, Elsevier, vol. 431(C).
    2. Maria Gamboa & Maria Jesus Lopez-Herrero, 2020. "The Effect of Setting a Warning Vaccination Level on a Stochastic SIVS Model with Imperfect Vaccine," Mathematics, MDPI, vol. 8(7), pages 1-23, July.
    3. Li, Qiuyue & Cong, Fuzhong & Liu, Tianbao & Zhou, Yaoming, 2020. "Stationary distribution of a stochastic HIV model with two infective stages," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 554(C).
    4. Zhang, Zizhen & Rahman, Ghaus ur & Gómez-Aguilar, J.F. & Torres-Jiménez, J., 2022. "Dynamical aspects of a delayed epidemic model with subdivision of susceptible population and control strategies," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    5. Alkhazzan, Abdulwasea & Wang, Jungang & Nie, Yufeng & Khan, Hasib & Alzabut, Jehad, 2023. "An effective transport-related SVIR stochastic epidemic model with media coverage and Lévy noise," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    6. Xu, Jiang & Chen, Tao & Wen, Xiangdan, 2021. "Analysis of a Bailey–Dietz model for vector-borne disease under regime switching," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 580(C).
    7. El Fatini, Mohamed & Sekkak, Idriss, 2020. "Lévy noise impact on a stochastic delayed epidemic model with Crowly–Martin incidence and crowding effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
    8. Caraballo, Tomás & Fatini, Mohamed El & Khalifi, Mohamed El & Gerlach, Richard & Pettersson, Roger, 2020. "Analysis of a stochastic distributed delay epidemic model with relapse and Gamma distribution kernel," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    9. Amani S. Baazeem & Yasir Nawaz & Muhammad Shoaib Arif & Kamaleldin Abodayeh & Mae Ahmed AlHamrani, 2023. "Modelling Infectious Disease Dynamics: A Robust Computational Approach for Stochastic SIRS with Partial Immunity and an Incidence Rate," Mathematics, MDPI, vol. 11(23), pages 1-22, November.
    10. Rathinasamy, A. & Chinnadurai, M. & Athithan, S., 2021. "Analysis of exact solution of stochastic sex-structured HIV/AIDS epidemic model with effect of screening of infectives," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 179(C), pages 213-237.
    11. RabieiMotlagh, Omid & Soleimani, Leila, 2023. "Effect of mutations on stochastic dynamics of infectious diseases, a probability approach," Applied Mathematics and Computation, Elsevier, vol. 451(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cao, Zhongwei & Feng, Wei & Wen, Xiangdan & Zu, Li, 2019. "Dynamical behavior of a stochastic SEI epidemic model with saturation incidence and logistic growth," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 894-907.
    2. Raja Sekhara Rao, P. & Naresh Kumar, M., 2015. "A dynamic model for infectious diseases: The role of vaccination and treatment," Chaos, Solitons & Fractals, Elsevier, vol. 75(C), pages 34-49.
    3. Teng, Zhidong & Wang, Lei, 2016. "Persistence and extinction for a class of stochastic SIS epidemic models with nonlinear incidence rate," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 507-518.
    4. Zhao, Dianli & Zhang, Tiansi & Yuan, Sanling, 2016. "The threshold of a stochastic SIVS epidemic model with nonlinear saturated incidence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 443(C), pages 372-379.
    5. Wen, Buyu & Teng, Zhidong & Li, Zhiming, 2018. "The threshold of a periodic stochastic SIVS epidemic model with nonlinear incidence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 532-549.
    6. Zhang, Xiao-Bing & Chang, Suqin & Shi, Qihong & Huo, Hai-Feng, 2018. "Qualitative study of a stochastic SIS epidemic model with vertical transmission," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 805-817.
    7. Liu, Qun & Jiang, Daqing & Shi, Ningzhong & Hayat, Tasawar & Alsaedi, Ahmed, 2016. "Asymptotic behavior of a stochastic delayed SEIR epidemic model with nonlinear incidence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 870-882.
    8. Jin, Xihua & Jia, Jianwen, 2020. "Qualitative study of a stochastic SIRS epidemic model with information intervention," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 547(C).
    9. Wang, Jinling & Jiang, Haijun & Hu, Cheng & Yu, Zhiyong & Li, Jiarong, 2021. "Stability and Hopf bifurcation analysis of multi-lingual rumor spreading model with nonlinear inhibition mechanism," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    10. Cao, Boqiang & Shan, Meijing & Zhang, Qimin & Wang, Weiming, 2017. "A stochastic SIS epidemic model with vaccination," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 486(C), pages 127-143.
    11. Jin, Manli, 2019. "Classification of asymptotic behavior in a stochastic SIS epidemic model with vaccination," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 661-666.
    12. Zhang, Xinhong & Jiang, Daqing & Hayat, Tasawar & Ahmad, Bashir, 2017. "Dynamics of a stochastic SIS model with double epidemic diseases driven by Lévy jumps," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 767-777.
    13. Wei, Fengying & Chen, Lihong, 2020. "Extinction and stationary distribution of an epidemic model with partial vaccination and nonlinear incidence rate," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    14. Rajasekar, S.P. & Pitchaimani, M., 2019. "Qualitative analysis of stochastically perturbed SIRS epidemic model with two viruses," Chaos, Solitons & Fractals, Elsevier, vol. 118(C), pages 207-221.
    15. Liu, Qun & Jiang, Daqing & Shi, Ningzhong & Hayat, Tasawar & Alsaedi, Ahmed, 2018. "The threshold of a stochastic SIS epidemic model with imperfect vaccination," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 144(C), pages 78-90.
    16. Fadwa El Kihal & Imane Abouelkheir & Mostafa Rachik & Ilias Elmouki, 2019. "Role of Media and Effects of Infodemics and Escapes in the Spatial Spread of Epidemics: A Stochastic Multi-Region Model with Optimal Control Approach," Mathematics, MDPI, vol. 7(3), pages 1-24, March.
    17. Lahrouz, A. & El Mahjour, H. & Settati, A. & Bernoussi, A., 2018. "Dynamics and optimal control of a non-linear epidemic model with relapse and cure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 299-317.
    18. Shi, Zhenfeng & Zhang, Xinhong & Jiang, Daqing, 2019. "Dynamics of an avian influenza model with half-saturated incidence," Applied Mathematics and Computation, Elsevier, vol. 355(C), pages 399-416.
    19. Hussain, Shah & Tunç, Osman & Rahman, Ghaus ur & Khan, Hasib & Nadia, Elissa, 2023. "Mathematical analysis of stochastic epidemic model of MERS-corona & application of ergodic theory," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 207(C), pages 130-150.
    20. Mugnaine, Michele & Gabrick, Enrique C. & Protachevicz, Paulo R. & Iarosz, Kelly C. & de Souza, Silvio L.T. & Almeida, Alexandre C.L. & Batista, Antonio M. & Caldas, Iberê L. & Szezech Jr, José D. & V, 2022. "Control attenuation and temporary immunity in a cellular automata SEIR epidemic model," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:111:y:2018:i:c:p:227-234. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.