IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v7y2019i3p304-d217036.html
   My bibliography  Save this article

Role of Media and Effects of Infodemics and Escapes in the Spatial Spread of Epidemics: A Stochastic Multi-Region Model with Optimal Control Approach

Author

Listed:
  • Fadwa El Kihal

    (Department of Mathematics and Computer Sciences, Faculty of Sciences Ben M’Sik, Hassan II University of Casablanca, Casablanca 20000, Morocco)

  • Imane Abouelkheir

    (Department of Mathematics and Computer Sciences, Faculty of Sciences Ben M’Sik, Hassan II University of Casablanca, Casablanca 20000, Morocco)

  • Mostafa Rachik

    (Department of Mathematics and Computer Sciences, Faculty of Sciences Ben M’Sik, Hassan II University of Casablanca, Casablanca 20000, Morocco)

  • Ilias Elmouki

    (Department of Mathematics and Computer Sciences, Faculty of Sciences Ben M’Sik, Hassan II University of Casablanca, Casablanca 20000, Morocco)

Abstract

Mass vaccination campaigns play major roles in the war against epidemics. Such prevention strategies cannot always reach their goals significantly without the help of media and awareness campaigns used to prevent contacts between susceptible and infected people. Feelings of fear, infodemics, and misconception could lead to some fluctuations of such policies. In addition to the vaccination strategy, the movement restriction approach is essential because of the factor of mobility or travel. However, anti-epidemic border measures may also be disturbed if some infected travelers manage to escape and infiltrate into a safer region. In this paper, we aim to study infection dynamics related to the spatial spread of an epidemic in interconnected regions in the presence of random perturbations caused by the three above-mentioned reasons. Therefore, we devise a stochastic multi-region epidemic model in which contacts between susceptible and infected populations, vaccination-based and movement restriction optimal control approaches are all assumed to be unpredictable, and then, we discuss the effectiveness of such policies. In order to reach our goal, we employ a stochastic maximum principle version for noised systems, state and prove the sufficient and necessary conditions of optimality, and finally provide the numerical results obtained using a stochastic progressive-regressive schemes method.

Suggested Citation

  • Fadwa El Kihal & Imane Abouelkheir & Mostafa Rachik & Ilias Elmouki, 2019. "Role of Media and Effects of Infodemics and Escapes in the Spatial Spread of Epidemics: A Stochastic Multi-Region Model with Optimal Control Approach," Mathematics, MDPI, vol. 7(3), pages 1-24, March.
  • Handle: RePEc:gam:jmathe:v:7:y:2019:i:3:p:304-:d:217036
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/7/3/304/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/7/3/304/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Yi & Cao, Jinde & Jin, Zhen & Zhang, Haifeng & Sun, Gui-Quan, 2013. "Impact of media coverage on epidemic spreading in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(23), pages 5824-5835.
    2. Lin, Yuguo & Jiang, Daqing & Wang, Shuai, 2014. "Stationary distribution of a stochastic SIS epidemic model with vaccination," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 394(C), pages 187-197.
    3. Zhao, Yanan & Jiang, Daqing & O’Regan, Donal, 2013. "The extinction and persistence of the stochastic SIS epidemic model with vaccination," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(20), pages 4916-4927.
    4. Witbooi, Peter J., 2013. "Stability of an SEIR epidemic model with independent stochastic perturbations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(20), pages 4928-4936.
    5. Cai, Yongli & Kang, Yun & Wang, Weiming, 2017. "A stochastic SIRS epidemic model with nonlinear incidence rate," Applied Mathematics and Computation, Elsevier, vol. 305(C), pages 221-240.
    6. Yuan, Xinpeng & Xue, Yakui & Liu, Maoxing, 2013. "Analysis of an epidemic model with awareness programs by media on complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 48(C), pages 1-11.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Dianli & Zhang, Tiansi & Yuan, Sanling, 2016. "The threshold of a stochastic SIVS epidemic model with nonlinear saturated incidence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 443(C), pages 372-379.
    2. Wen, Buyu & Teng, Zhidong & Li, Zhiming, 2018. "The threshold of a periodic stochastic SIVS epidemic model with nonlinear incidence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 532-549.
    3. Lan, Guijie & Chen, Zhewen & Wei, Chunjin & Zhang, Shuwen, 2018. "Stationary distribution of a stochastic SIQR epidemic model with saturated incidence and degenerate diffusion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 511(C), pages 61-77.
    4. Teng, Zhidong & Wang, Lei, 2016. "Persistence and extinction for a class of stochastic SIS epidemic models with nonlinear incidence rate," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 507-518.
    5. Zhang, Xiao-Bing & Chang, Suqin & Shi, Qihong & Huo, Hai-Feng, 2018. "Qualitative study of a stochastic SIS epidemic model with vertical transmission," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 805-817.
    6. Liu, Qun & Jiang, Daqing & Shi, Ningzhong & Hayat, Tasawar & Alsaedi, Ahmed, 2016. "Asymptotic behavior of a stochastic delayed SEIR epidemic model with nonlinear incidence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 870-882.
    7. Huo, Liang’an & Wang, Li & Zhao, Xiaomin, 2019. "Stability analysis and optimal control of a rumor spreading model with media report," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 517(C), pages 551-562.
    8. Jin, Xihua & Jia, Jianwen, 2020. "Qualitative study of a stochastic SIRS epidemic model with information intervention," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 547(C).
    9. Liu, Qun & Jiang, Daqing & Shi, Ningzhong & Hayat, Tasawar & Alsaedi, Ahmed, 2017. "Asymptotic behavior of stochastic multi-group epidemic models with distributed delays," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 467(C), pages 527-541.
    10. Cao, Boqiang & Shan, Meijing & Zhang, Qimin & Wang, Weiming, 2017. "A stochastic SIS epidemic model with vaccination," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 486(C), pages 127-143.
    11. Liu, Qun & Jiang, Daqing & Hayat, Tasawar & Ahmad, Bashir, 2017. "Asymptotic behavior of a stochastic delayed HIV-1 infection model with nonlinear incidence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 486(C), pages 867-882.
    12. Jin, Manli, 2019. "Classification of asymptotic behavior in a stochastic SIS epidemic model with vaccination," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 661-666.
    13. Zhang, Xinhong & Jiang, Daqing & Hayat, Tasawar & Ahmad, Bashir, 2017. "Dynamics of a stochastic SIS model with double epidemic diseases driven by Lévy jumps," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 767-777.
    14. Xu, Changyong & Li, Xiaoyue, 2018. "The threshold of a stochastic delayed SIRS epidemic model with temporary immunity and vaccination," Chaos, Solitons & Fractals, Elsevier, vol. 111(C), pages 227-234.
    15. Wei, Fengying & Chen, Lihong, 2020. "Extinction and stationary distribution of an epidemic model with partial vaccination and nonlinear incidence rate," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    16. Cao, Zhongwei & Feng, Wei & Wen, Xiangdan & Zu, Li, 2019. "Dynamical behavior of a stochastic SEI epidemic model with saturation incidence and logistic growth," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 894-907.
    17. Liu, Qun & Jiang, Daqing & Shi, Ningzhong & Hayat, Tasawar & Alsaedi, Ahmed, 2018. "The threshold of a stochastic SIS epidemic model with imperfect vaccination," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 144(C), pages 78-90.
    18. Zhao, Yu & Zhang, Liping & Yuan, Sanling, 2018. "The effect of media coverage on threshold dynamics for a stochastic SIS epidemic model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 248-260.
    19. Huyi Wang & Ge Zhang & Tao Chen & Zhiming Li, 2023. "Threshold Analysis of a Stochastic SIRS Epidemic Model with Logistic Birth and Nonlinear Incidence," Mathematics, MDPI, vol. 11(7), pages 1-17, April.
    20. Liu, Qun & Jiang, Daqing & Hayat, Tasawar & Alsaedi, Ahmed & Ahmad, Bashir, 2020. "A stochastic SIRS epidemic model with logistic growth and general nonlinear incidence rate," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:7:y:2019:i:3:p:304-:d:217036. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.