IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v104y2017icp806-812.html
   My bibliography  Save this article

Probabilistic response analysis of nonlinear vibration energy harvesting system driven by Gaussian colored noise

Author

Listed:
  • Liu, Di
  • Xu, Yong
  • Li, Junlin

Abstract

A new quasi-conservative stochastic averaging method is proposed to analyze the Probabilistic response of nonlinear vibration energy harvesting (VEH) system driven by exponentially correlated Gaussian colored noise. By introducing a method combining a transformation and the residual phase, the nonlinear vibration electromechanical coupling system is equivalent to a single degree of freedom system, which contains the energy-dependent frequency functions. Then the corresponding drift and diffusion coefficients of the averaged Ito^ stochastic differential equation for the equivalent nonlinear system are derived, which are dependent on the correlation time of Gaussian colored noise. The probability density function (PDF) of stationary responses is derived through solving the associated Fokker–Plank–Kolmogorov (FPK) equation. Finally, the mean-square electric voltage and mean output power are analytically obtained through the relation between the electric voltage and the vibration displacement, and the output power has a linear square relationship with the electric voltage, respectively. The main results on probabilistic response of VEH system are obtained to illustrate the proposed stochastic averaging method, and Monte Carlo (MC) simulation method is also conducted to show that the proposed method is quite effective.

Suggested Citation

  • Liu, Di & Xu, Yong & Li, Junlin, 2017. "Probabilistic response analysis of nonlinear vibration energy harvesting system driven by Gaussian colored noise," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 806-812.
  • Handle: RePEc:eee:chsofr:v:104:y:2017:i:c:p:806-812
    DOI: 10.1016/j.chaos.2017.09.027
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077917303958
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2017.09.027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mokem Fokou, I.S. & Nono Dueyou Buckjohn, C. & Siewe Siewe, M. & Tchawoua, C., 2016. "Probabilistic behavior analysis of a sandwiched buckled beam under Gaussian white noise with energy harvesting perspectives," Chaos, Solitons & Fractals, Elsevier, vol. 92(C), pages 101-114.
    2. Vocca, Helios & Neri, Igor & Travasso, Flavio & Gammaitoni, Luca, 2012. "Kinetic energy harvesting with bistable oscillators," Applied Energy, Elsevier, vol. 97(C), pages 771-776.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fezeu, G.J. & Fokou, I.S. Mokem & Buckjohn, C. Nono Dueyou & Siewe Siewe, M. & Tchawoua, C., 2020. "Resistance induced P-bifurcation and Ghost-Stochastic resonance of a hybrid energy harvester under colored noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 557(C).
    2. Dongmei Huang & Shengxi Zhou & Zhichun Yang, 2019. "Resonance Mechanism of Nonlinear Vibrational Multistable Energy Harvesters under Narrow-Band Stochastic Parametric Excitations," Complexity, Hindawi, vol. 2019, pages 1-20, December.
    3. Deng, Hang & Ye, Jimin & Huang, Dongmei, 2023. "Design and analysis of a galloping energy harvester with V-shape spring structure under Gaussian white noise," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    4. Liu, Di & Li, Junlin & Meng, Yu, 2019. "Probabilistic response analysis for a class of nonlinear vibro-impact oscillator with bilateral constraints under colored noise excitation," Chaos, Solitons & Fractals, Elsevier, vol. 122(C), pages 179-188.
    5. Guo, Shu-Ling & Yang, Yong-Ge & Sun, Ya-Hui, 2021. "Stochastic response of an energy harvesting system with viscoelastic element under Gaussian white noise excitation," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    6. Yang, Tao & Cao, Qingjie, 2020. "Dynamics and high-efficiency of a novel multi-stable energy harvesting system," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Lin & Liao, Xin & Sun, Beibei & Zhang, Ning & Wu, Jianwei, 2022. "A numerical-experimental dynamic analysis of high-efficiency and broadband bistable energy harvester with self-decreasing potential barrier effect," Applied Energy, Elsevier, vol. 317(C).
    2. Huguet, Thomas & Badel, Adrien & Druet, Olivier & Lallart, Mickaël, 2018. "Drastic bandwidth enhancement of bistable energy harvesters: Study of subharmonic behaviors and their stability robustness," Applied Energy, Elsevier, vol. 226(C), pages 607-617.
    3. Yildirim, Tanju & Ghayesh, Mergen H. & Li, Weihua & Alici, Gursel, 2017. "A review on performance enhancement techniques for ambient vibration energy harvesters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 435-449.
    4. Guo, Shu-Ling & Yang, Yong-Ge & Sun, Ya-Hui, 2021. "Stochastic response of an energy harvesting system with viscoelastic element under Gaussian white noise excitation," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    5. Wei, Chongfeng & Jing, Xingjian, 2017. "A comprehensive review on vibration energy harvesting: Modelling and realization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1-18.
    6. Zhang, L.B. & Dai, H.L. & Abdelkefi, A. & Wang, L., 2019. "Experimental investigation of aerodynamic energy harvester with different interference cylinder cross-sections," Energy, Elsevier, vol. 167(C), pages 970-981.
    7. Zhang, Yulong & Wang, Tianyang & Luo, Anxin & Hu, Yushen & Li, Xinxin & Wang, Fei, 2018. "Micro electrostatic energy harvester with both broad bandwidth and high normalized power density," Applied Energy, Elsevier, vol. 212(C), pages 362-371.
    8. Wang, Chaohui & Zhao, Jianxiong & Li, Qiang & Li, Yanwei, 2018. "Optimization design and experimental investigation of piezoelectric energy harvesting devices for pavement," Applied Energy, Elsevier, vol. 229(C), pages 18-30.
    9. Lee, Hyeon & Sharpes, Nathan & Abdelmoula, Hichem & Abdelkefi, Abdessattar & Priya, Shashank, 2018. "Higher power generation from torsion-dominant mode in a zigzag shaped two-dimensional energy harvester," Applied Energy, Elsevier, vol. 216(C), pages 494-503.
    10. Younesian, Davood & Alam, Mohammad-Reza, 2017. "Multi-stable mechanisms for high-efficiency and broadband ocean wave energy harvesting," Applied Energy, Elsevier, vol. 197(C), pages 292-302.
    11. Tingting Zhang & Yanfei Jin, 2024. "Stochastic optimal control of a tri-stable energy harvester with the P-SSHI circuit under colored noise," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 97(1), pages 1-13, January.
    12. Fezeu, G.J. & Fokou, I.S. Mokem & Buckjohn, C. Nono Dueyou & Siewe Siewe, M. & Tchawoua, C., 2020. "Resistance induced P-bifurcation and Ghost-Stochastic resonance of a hybrid energy harvester under colored noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 557(C).
    13. Michele Bonnin & Fabio L. Traversa & Fabrizio Bonani, 2022. "An Impedance Matching Solution to Increase the Harvested Power and Efficiency of Nonlinear Piezoelectric Energy Harvesters," Energies, MDPI, vol. 15(8), pages 1-17, April.
    14. Thanh Tung, Nguyen & Taxil, Gaspard & Nguyen, Hung Hoang & Ducharne, Benjamin & Lallart, Mickaël & Lefeuvre, Elie & Kuwano, Hiroki & Sebald, Gael, 2022. "Ultimate electromechanical energy conversion performance and energy storage capacity of ferroelectric materials under high excitation levels," Applied Energy, Elsevier, vol. 326(C).
    15. Xiong, Haocheng & Wang, Linbing, 2016. "Piezoelectric energy harvester for public roadway: On-site installation and evaluation," Applied Energy, Elsevier, vol. 174(C), pages 101-107.
    16. Zhou, Shengxi & Cao, Junyi & Inman, Daniel J. & Lin, Jing & Liu, Shengsheng & Wang, Zezhou, 2014. "Broadband tristable energy harvester: Modeling and experiment verification," Applied Energy, Elsevier, vol. 133(C), pages 33-39.
    17. Qiao, Guofu & Sun, Guodong & Li, Hui & Ou, Jinping, 2014. "Heterogeneous tiny energy: An appealing opportunity to power wireless sensor motes in a corrosive environment," Applied Energy, Elsevier, vol. 131(C), pages 87-96.
    18. Wang, Xiang & Chen, Changsong & Wang, Na & San, Haisheng & Yu, Yuxi & Halvorsen, Einar & Chen, Xuyuan, 2017. "A frequency and bandwidth tunable piezoelectric vibration energy harvester using multiple nonlinear techniques," Applied Energy, Elsevier, vol. 190(C), pages 368-375.
    19. Gao, Mingyuan & Wang, Yuan & Wang, Yifeng & Wang, Ping, 2018. "Experimental investigation of non-linear multi-stable electromagnetic-induction energy harvesting mechanism by magnetic levitation oscillation," Applied Energy, Elsevier, vol. 220(C), pages 856-875.
    20. Mohammadreza Gholikhani & Seyed Amid Tahami & Mohammadreza Khalili & Samer Dessouky, 2019. "Electromagnetic Energy Harvesting Technology: Key to Sustainability in Transportation Systems," Sustainability, MDPI, vol. 11(18), pages 1-18, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:104:y:2017:i:c:p:806-812. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.