IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v98y2012icp256-265.html
   My bibliography  Save this article

Design of a combined cycle power plant model for optimization

Author

Listed:
  • Tică, Adrian
  • Guéguen, Hervé
  • Dumur, Didier
  • Faille, Damien
  • Davelaar, Frans

Abstract

Due to their numerous advantages, combined cycle power plants (CCPPs) have become an important technology for power generation. The part played by CCPPs on the power generation market includes frequent start-up/shutdown operations which must be optimized by means of innovative strategies, such as model-based methods. The availability of dedicated languages and libraries for physical system modeling facilitates the implementation of accurate large-scale models. However, the efficient resolution of optimization problems based on such models requires powerful algorithms, which impose a series of constraints on the model formulation, in particular, that of the lack of discontinuity source. This paper presents a method to transform a CCPP physical model designed for simulation in an optimization-oriented model, which can be further used with efficient algorithms to improve start-up performances. The methodology is based on the reformulation of the plant initially represented with discontinuity sources into a smooth model, by using continuous approximations of the Heaviside function. The validation results demonstrate the model consistency and emphasize the fact that it is accurate enough to be used for optimization and control purposes.

Suggested Citation

  • Tică, Adrian & Guéguen, Hervé & Dumur, Didier & Faille, Damien & Davelaar, Frans, 2012. "Design of a combined cycle power plant model for optimization," Applied Energy, Elsevier, vol. 98(C), pages 256-265.
  • Handle: RePEc:eee:appene:v:98:y:2012:i:c:p:256-265
    DOI: 10.1016/j.apenergy.2012.03.032
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626191200236X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2012.03.032?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alobaid, Falah & Postler, Ralf & Ströhle, Jochen & Epple, Bernd & Kim, Hyun-Gee, 2008. "Modeling and investigation start-up procedures of a combined cycle power plant," Applied Energy, Elsevier, vol. 85(12), pages 1173-1189, December.
    2. Variny, Miroslav & Mierka, Otto, 2009. "Improvement of part load efficiency of a combined cycle power plant provisioning ancillary services," Applied Energy, Elsevier, vol. 86(6), pages 888-894, June.
    3. Martelli, Emanuele & Nord, Lars O. & Bolland, Olav, 2012. "Design criteria and optimization of heat recovery steam cycles for integrated reforming combined cycles with CO2 capture," Applied Energy, Elsevier, vol. 92(C), pages 255-268.
    4. Francesco Casella & Alberto Leva, 2006. "Modelling of thermo-hydraulic power generation processes using Modelica," Mathematical and Computer Modelling of Dynamical Systems, Taylor & Francis Journals, vol. 12(1), pages 19-33, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Colmenar-Santos, Antonio & Gómez-Camazón, David & Rosales-Asensio, Enrique & Blanes-Peiró, Jorge-Juan, 2018. "Technological improvements in energetic efficiency and sustainability in existing combined-cycle gas turbine (CCGT) power plants," Applied Energy, Elsevier, vol. 223(C), pages 30-51.
    2. Tammo Zobel & Andreas Ritter & Christopher H. Onder, 2023. "The Faster the Better? Optimal Warm-Up Strategies for a Micro Combined Heat and Power Plant," Energies, MDPI, vol. 16(10), pages 1-24, May.
    3. Jesse G. Wales & Alexander J. Zolan & William T. Hamilton & Alexandra M. Newman & Michael J. Wagner, 2023. "Combining simulation and optimization to derive operating policies for a concentrating solar power plant," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 45(1), pages 119-150, March.
    4. Benato, Alberto & Stoppato, Anna & Mirandola, Alberto, 2015. "Dynamic behaviour analysis of a three pressure level heat recovery steam generator during transient operation," Energy, Elsevier, vol. 90(P2), pages 1595-1605.
    5. Carcasci, Carlo & Cosi, Lorenzo & Ferraro, Riccardo & Pacifici, Beniamino, 2017. "Effect of a real steam turbine on thermoeconomic analysis of combined cycle power plants," Energy, Elsevier, vol. 138(C), pages 32-47.
    6. Rossi, Iacopo & Sorce, Alessandro & Traverso, Alberto, 2017. "Gas turbine combined cycle start-up and stress evaluation: A simplified dynamic approach," Applied Energy, Elsevier, vol. 190(C), pages 880-890.
    7. Dong-mei, Ji & Jia-qi, Sun & Quan, Sun & Heng-Chao, Guo & Jian-xing, Ren & Quan-jun, Zhu, 2018. "Optimization of start-up scheduling and life assessment for a steam turbine," Energy, Elsevier, vol. 160(C), pages 19-32.
    8. Kotowicz, Janusz & Brzęczek, Mateusz & Job, Marcin, 2018. "The thermodynamic and economic characteristics of the modern combined cycle power plant with gas turbine steam cooling," Energy, Elsevier, vol. 164(C), pages 359-376.
    9. Barigozzi, G. & Perdichizzi, A. & Ravelli, S., 2014. "Performance prediction and optimization of a waste-to-energy cogeneration plant with combined wet and dry cooling system," Applied Energy, Elsevier, vol. 115(C), pages 65-74.
    10. Buonomano, Annamaria & Calise, Francesco & d’Accadia, Massimo Dentice & Palombo, Adolfo & Vicidomini, Maria, 2015. "Hybrid solid oxide fuel cells–gas turbine systems for combined heat and power: A review," Applied Energy, Elsevier, vol. 156(C), pages 32-85.
    11. Fan, He & Zhang, Yu-fei & Su, Zhi-gang & Wang, Ben, 2017. "A dynamic mathematical model of an ultra-supercritical coal fired once-through boiler-turbine unit," Applied Energy, Elsevier, vol. 189(C), pages 654-666.
    12. Ji, Dong-Mei & Sun, Jia-Qi & Dui, Yue & Ren, Jian-Xing, 2017. "The optimization of the start-up scheduling for a 320 MW steam turbine," Energy, Elsevier, vol. 125(C), pages 345-355.
    13. Imran, Muhammad & Pili, Roberto & Usman, Muhammad & Haglind, Fredrik, 2020. "Dynamic modeling and control strategies of organic Rankine cycle systems: Methods and challenges," Applied Energy, Elsevier, vol. 276(C).
    14. Kotowicz, Janusz & Brzęczek, Mateusz, 2019. "Comprehensive multivariable analysis of the possibility of an increase in the electrical efficiency of a modern combined cycle power plant with and without a CO2 capture and compression installations ," Energy, Elsevier, vol. 175(C), pages 1100-1120.
    15. Han, Lu & Bollas, George M., 2016. "Dynamic optimization of fixed bed chemical-looping combustion processes," Energy, Elsevier, vol. 112(C), pages 1107-1119.
    16. Guido Marseglia & Blanca Fernandez Vasquez-Pena & Carlo Maria Medaglia & Ricardo Chacartegui, 2020. "Alternative Fuels for Combined Cycle Power Plants: An Analysis of Options for a Location in India," Sustainability, MDPI, vol. 12(8), pages 1-25, April.
    17. Nadir, Mahmoud & Ghenaiet, Adel, 2015. "Thermodynamic optimization of several (heat recovery steam generator) HRSG configurations for a range of exhaust gas temperatures," Energy, Elsevier, vol. 86(C), pages 685-695.
    18. Caballero, José A. & Navarro, Miguel A. & Ruiz-Femenia, Rubén & Grossmann, Ignacio E., 2014. "Integration of different models in the design of chemical processes: Application to the design of a power plant," Applied Energy, Elsevier, vol. 124(C), pages 256-273.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Benato, Alberto & Stoppato, Anna & Mirandola, Alberto, 2015. "Dynamic behaviour analysis of a three pressure level heat recovery steam generator during transient operation," Energy, Elsevier, vol. 90(P2), pages 1595-1605.
    2. Emblemsvåg, Jan, 2022. "Wind energy is not sustainable when balanced by fossil energy," Applied Energy, Elsevier, vol. 305(C).
    3. Taler, Jan & Zima, Wiesław & Ocłoń, Paweł & Grądziel, Sławomir & Taler, Dawid & Cebula, Artur & Jaremkiewicz, Magdalena & Korzeń, Anna & Cisek, Piotr & Kaczmarski, Karol & Majewski, Karol, 2019. "Mathematical model of a supercritical power boiler for simulating rapid changes in boiler thermal loading," Energy, Elsevier, vol. 175(C), pages 580-592.
    4. Alobaid, Falah & Karner, Karl & Belz, Jörg & Epple, Bernd & Kim, Hyun-Gee, 2014. "Numerical and experimental study of a heat recovery steam generator during start-up procedure," Energy, Elsevier, vol. 64(C), pages 1057-1070.
    5. Heo, Jin Young & Kim, Min Seok & Baik, Seungjoon & Bae, Seong Jun & Lee, Jeong Ik, 2017. "Thermodynamic study of supercritical CO2 Brayton cycle using an isothermal compressor," Applied Energy, Elsevier, vol. 206(C), pages 1118-1130.
    6. Barelli, Linda & Ottaviano, Andrea, 2015. "Supercharged gas turbine combined cycle: An improvement in plant flexibility and efficiency," Energy, Elsevier, vol. 81(C), pages 615-626.
    7. Isaksson, Johan & Pettersson, Karin & Mahmoudkhani, Maryam & Åsblad, Anders & Berntsson, Thore, 2012. "Integration of biomass gasification with a Scandinavian mechanical pulp and paper mill – Consequences for mass and energy balances and global CO2 emissions," Energy, Elsevier, vol. 44(1), pages 420-428.
    8. Yang, Cheng & Huang, Zhifeng & Ma, Xiaoqian, 2018. "Comparative study on off-design characteristics of CHP based on GTCC under alternative operating strategy for gas turbine," Energy, Elsevier, vol. 145(C), pages 823-838.
    9. Kim, Min Seok & Ahn, Yoonhan & Kim, Beomjoo & Lee, Jeong Ik, 2016. "Study on the supercritical CO2 power cycles for landfill gas firing gas turbine bottoming cycle," Energy, Elsevier, vol. 111(C), pages 893-909.
    10. Dong-mei, Ji & Jia-qi, Sun & Quan, Sun & Heng-Chao, Guo & Jian-xing, Ren & Quan-jun, Zhu, 2018. "Optimization of start-up scheduling and life assessment for a steam turbine," Energy, Elsevier, vol. 160(C), pages 19-32.
    11. Nadir, Mahmoud & Ghenaiet, Adel, 2015. "Thermodynamic optimization of several (heat recovery steam generator) HRSG configurations for a range of exhaust gas temperatures," Energy, Elsevier, vol. 86(C), pages 685-695.
    12. Colmenar-Santos, Antonio & Gómez-Camazón, David & Rosales-Asensio, Enrique & Blanes-Peiró, Jorge-Juan, 2018. "Technological improvements in energetic efficiency and sustainability in existing combined-cycle gas turbine (CCGT) power plants," Applied Energy, Elsevier, vol. 223(C), pages 30-51.
    13. Romero-Anton, N. & Martin-Escudero, K. & Portillo-Valdés, L.A. & Gómez-Elvira, I. & Salazar-Herran, E., 2018. "Improvement of auxiliary BI-DRUM boiler operation by dynamic simulation," Energy, Elsevier, vol. 148(C), pages 676-686.
    14. Taler, Jan & Taler, Dawid & Kaczmarski, Karol & Dzierwa, Piotr & Trojan, Marcin & Sobota, Tomasz, 2018. "Monitoring of thermal stresses in pressure components based on the wall temperature measurement," Energy, Elsevier, vol. 160(C), pages 500-519.
    15. Holmgren, Kristina M. & Berntsson, Thore S. & Andersson, Eva & Rydberg, Tomas, 2015. "The influence of biomass supply chains and by-products on the greenhouse gas emissions from gasification-based bio-SNG production systems," Energy, Elsevier, vol. 90(P1), pages 148-162.
    16. Ammar Bany Ata & Peter Maximilian Seufert & Christian Heinze & Falah Alobaid & Bernd Epple, 2021. "Optimization of Integrated Gasification Combined-Cycle Power Plant for Polygeneration of Power and Chemicals," Energies, MDPI, vol. 14(21), pages 1-24, November.
    17. Kang, Charles A. & Brandt, Adam R. & Durlofsky, Louis J. & Jayaweera, Indira, 2016. "Assessment of advanced solvent-based post-combustion CO2 capture processes using a bi-objective optimization technique," Applied Energy, Elsevier, vol. 179(C), pages 1209-1219.
    18. Orlandini, Valentina & Pierobon, Leonardo & Schløer, Signe & De Pascale, Andrea & Haglind, Fredrik, 2016. "Dynamic performance of a novel offshore power system integrated with a wind farm," Energy, Elsevier, vol. 109(C), pages 236-247.
    19. Ji, Dong-Mei & Sun, Jia-Qi & Dui, Yue & Ren, Jian-Xing, 2017. "The optimization of the start-up scheduling for a 320 MW steam turbine," Energy, Elsevier, vol. 125(C), pages 345-355.
    20. Angerer, Michael & Kahlert, Steffen & Spliethoff, Hartmut, 2017. "Transient simulation and fatigue evaluation of fast gas turbine startups and shutdowns in a combined cycle plant with an innovative thermal buffer storage," Energy, Elsevier, vol. 130(C), pages 246-257.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:98:y:2012:i:c:p:256-265. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.