IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v262y2023ipas0360544222022484.html
   My bibliography  Save this article

Peak regulation performance study of GTCC based CHP system with compressor inlet air heating method

Author

Listed:
  • Wang, Xinwei
  • Duan, Liqiang
  • Zhu, Ziqiang

Abstract

Improving the peak regulation performance of GTCC (gas turbine combined cycle) based CHP (combined heating and power) system helps to increase the renewable energy consumption and increase the profit of the GTCC based CHP system. In this paper, the effects of different compressor inlet air temperatures on both key parameters and the thermal performance and economic performance of the GTCC based CHP system are studied and feasible operating regions of the GTCC based CHP system are obtained. Finally, taking the heating characteristic day as an example, peak regulation performances and profit change of the GTCC based CHP system are analyzed. The results show that the compressor inlet air heating method helps to enlarge the operation region of the GTCC based CHP system under the same output power. From the heating characteristic days of period 1 to period 4, the renewable energy consumptions of the GTCC based CHP system are increased by 252.15 MW, 380.17 MW, 300.8 MW and 239.96 MW, respectively. From the perspective of technical economic performance, the net annual revenue of the GTCC based CHP system is increased by 181.83 × 104 $. The dynamic payback period is 3.3 years.

Suggested Citation

  • Wang, Xinwei & Duan, Liqiang & Zhu, Ziqiang, 2023. "Peak regulation performance study of GTCC based CHP system with compressor inlet air heating method," Energy, Elsevier, vol. 262(PA).
  • Handle: RePEc:eee:energy:v:262:y:2023:i:pa:s0360544222022484
    DOI: 10.1016/j.energy.2022.125366
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222022484
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.125366?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kim, T.S & Ro, S.T, 2000. "Power augmentation of combined cycle power plants using cold energy of liquefied natural gas," Energy, Elsevier, vol. 25(9), pages 841-856.
    2. Fan, Gang & Lu, Xiaochen & Chen, Kang & Zhang, Yicen & Han, Zihao & Yu, Haibin & Dai, Yiping, 2022. "Comparative analysis on design and off-design performance of novel cascade CO2 combined cycles for gas turbine waste heat utilization," Energy, Elsevier, vol. 254(PA).
    3. Variny, Miroslav & Mierka, Otto, 2009. "Improvement of part load efficiency of a combined cycle power plant provisioning ancillary services," Applied Energy, Elsevier, vol. 86(6), pages 888-894, June.
    4. Prakash, M. & Sarkar, A. & Sarkar, J. & Chakraborty, J.P. & Mondal, S.S. & Sahoo, R.R., 2019. "Performance assessment of novel biomass gasification based CCHP systems integrated with syngas production," Energy, Elsevier, vol. 167(C), pages 379-390.
    5. ZhiTan Liu & XiaoDong Ren & ZhiYuan Yan & HongFei Zhu & Tao Zhang & Wei Zhu & XueSong Li, 2019. "Effect of Inlet Air Heating on Gas Turbine Efficiency under Partial Load," Energies, MDPI, vol. 12(17), pages 1-11, August.
    6. Wang, Jiangjiang & Xie, Xinqi & Lu, Yanchao & Liu, Boxiang & Li, Xiaojing, 2018. "Thermodynamic performance analysis and comparison of a combined cooling heating and power system integrated with two types of thermal energy storage," Applied Energy, Elsevier, vol. 219(C), pages 114-122.
    7. Wang, Zefeng & Han, Wei & Zhang, Na & Liu, Meng & Jin, Hongguang, 2017. "Effect of an alternative operating strategy for gas turbine on a combined cooling heating and power system," Applied Energy, Elsevier, vol. 205(C), pages 163-172.
    8. Yang, Yongping & Bai, Ziwei & Zhang, Guoqiang & Li, Yongyi & Wang, Ziyu & Yu, Guangying, 2019. "Design/off-design performance simulation and discussion for the gas turbine combined cycle with inlet air heating," Energy, Elsevier, vol. 178(C), pages 386-399.
    9. Wang, Haichao & Hua, Pengmin & Wu, Xiaozhou & Zhang, Ruoyu & Granlund, Katja & Li, Ji & Zhu, Yingjie & Lahdelma, Risto & Teppo, Esa & Yu, Li, 2022. "Heat-power decoupling and energy saving of the CHP unit with heat pump based waste heat recovery system," Energy, Elsevier, vol. 250(C).
    10. Prakash, M. & Sarkar, A. & Sarkar, J. & Mondal, S.S. & Chakraborty, J.P., 2017. "Proposal and design of a new biomass based syngas production system integrated with combined heat and power generation," Energy, Elsevier, vol. 133(C), pages 986-997.
    11. Ma, Liqun & Ge, Zhihua & Zhang, Fuxiang & Wei, Huimin, 2020. "A novel super high back pressure cascade heating scheme with multiple large-scale turbine units," Energy, Elsevier, vol. 201(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiao, Runke & Yang, Cheng & Qi, Hanjie & Ma, Xiaoqian, 2023. "Synergetic performance of gas turbine combined cycle unit with inlet cooled by quasi-isobaric ACAES exhaust," Applied Energy, Elsevier, vol. 352(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Yongyi & Lin, Yuchao & He, Yichong & Zhang, Guoqiang & Zhang, Lei & Yang, Jianmeng & Sun, Enhui, 2023. "Part-load performance analysis of a dual-recuperated gas turbine combined cycle system," Energy, Elsevier, vol. 269(C).
    2. Yang, Cheng & Huang, Zhifeng & Ma, Xiaoqian, 2018. "Comparative study on off-design characteristics of CHP based on GTCC under alternative operating strategy for gas turbine," Energy, Elsevier, vol. 145(C), pages 823-838.
    3. Chen, W.D. & Chua, K.J., 2022. "A novel and optimized operation strategy map for CCHP systems considering optimal thermal energy utilization," Energy, Elsevier, vol. 259(C).
    4. Li, Xian & Chen, Jialing & Sun, Xiangyu & Zhao, Yao & Chong, Clive & Dai, Yanjun & Wang, Chi-Hwa, 2021. "Multi-criteria decision making of biomass gasification-based cogeneration systems with heat storage and solid dehumidification of desiccant coated heat exchangers," Energy, Elsevier, vol. 233(C).
    5. Diana L. Tinoco Caicedo & Myrian Santos Torres & Medelyne Mero-Benavides & Oscar Patiño Lopez & Alexis Lozano Medina & Ana M. Blanco Marigorta, 2023. "Simulation and Exergoeconomic Analysis of a Trigeneration System Based on Biofuels from Spent Coffee Grounds," Energies, MDPI, vol. 16(4), pages 1-17, February.
    6. Wang, Chao & Jiang, Zhiqiang & Song, Qingbin & Liao, Mingzheng & Weng, Jiahong & Gao, Rui & Zhao, Ming & Chen, Ying & Chen, Guanyi, 2021. "Investigation on hydrogen-rich syngas production from catalytic co-pyrolysis of polyvinyl chloride (PVC) and waste paper blends," Energy, Elsevier, vol. 232(C).
    7. Wang, Zefeng & Han, Wei & Zhang, Na & Su, Bosheng & Gan, Zhongxue & Jin, Hongguang, 2018. "Effects of different alternative control methods for gas turbine on the off-design performance of a trigeneration system," Applied Energy, Elsevier, vol. 215(C), pages 227-236.
    8. Wang, Yongli & Wang, Yudong & Huang, Yujing & Yang, Jiale & Ma, Yuze & Yu, Haiyang & Zeng, Ming & Zhang, Fuwei & Zhang, Yanfu, 2019. "Operation optimization of regional integrated energy system based on the modeling of electricity-thermal-natural gas network," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    9. Emblemsvåg, Jan, 2022. "Wind energy is not sustainable when balanced by fossil energy," Applied Energy, Elsevier, vol. 305(C).
    10. Querol, E. & Gonzalez-Regueral, B. & García-Torrent, J. & Ramos, Alberto, 2011. "Available power generation cycles to be coupled with the liquid natural gas (LNG) vaporization process in a Spanish LNG terminal," Applied Energy, Elsevier, vol. 88(7), pages 2382-2390, July.
    11. Szczygiel, Ireneusz & Bulinski, Zbigniew, 2018. "Overview of the liquid natural gas (LNG) regasification technologies with the special focus on the Prof. Szargut's impact," Energy, Elsevier, vol. 165(PB), pages 999-1008.
    12. Mao, Anjia & Yu, Tiantian & Ding, Zhaohao & Fang, Sidun & Guo, Jinran & Sheng, Qianqian, 2022. "Optimal scheduling for seaport integrated energy system considering flexible berth allocation," Applied Energy, Elsevier, vol. 308(C).
    13. Yang, Yongping & Bai, Ziwei & Zhang, Guoqiang & Li, Yongyi & Wang, Ziyu & Yu, Guangying, 2019. "Design/off-design performance simulation and discussion for the gas turbine combined cycle with inlet air heating," Energy, Elsevier, vol. 178(C), pages 386-399.
    14. Barelli, Linda & Ottaviano, Andrea, 2015. "Supercharged gas turbine combined cycle: An improvement in plant flexibility and efficiency," Energy, Elsevier, vol. 81(C), pages 615-626.
    15. Colmenar-Santos, Antonio & Gómez-Camazón, David & Rosales-Asensio, Enrique & Blanes-Peiró, Jorge-Juan, 2018. "Technological improvements in energetic efficiency and sustainability in existing combined-cycle gas turbine (CCGT) power plants," Applied Energy, Elsevier, vol. 223(C), pages 30-51.
    16. Zhang, Youjun & Xiong, Nian & Ge, Zhihua & Zhang, Yichen & Hao, Junhong & Yang, Zhiping, 2020. "A novel cascade heating system for waste heat recovery in the combined heat and power plant integrating with the steam jet pump," Applied Energy, Elsevier, vol. 278(C).
    17. Gibb, Duncan & Johnson, Maike & Romaní, Joaquim & Gasia, Jaume & Cabeza, Luisa F. & Seitz, Antje, 2018. "Process integration of thermal energy storage systems – Evaluation methodology and case studies," Applied Energy, Elsevier, vol. 230(C), pages 750-760.
    18. He, Tianbiao & Chong, Zheng Rong & Zheng, Junjie & Ju, Yonglin & Linga, Praveen, 2019. "LNG cold energy utilization: Prospects and challenges," Energy, Elsevier, vol. 170(C), pages 557-568.
    19. Yidan Song & Qiaoqun Sun & Yu Zhang & Yaodong Da & Heming Dong & Hebo Zhang & Qian Du & Jianmin Gao, 2023. "Modeling and Optimization of Natural Gas CCHP System in the Severe Cold Region," Energies, MDPI, vol. 16(12), pages 1-18, June.
    20. Kang, Do Won & Kim, Tong Seop, 2018. "Model-based performance diagnostics of heavy-duty gas turbines using compressor map adaptation," Applied Energy, Elsevier, vol. 212(C), pages 1345-1359.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:262:y:2023:i:pa:s0360544222022484. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.