IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v90y2012i1p87-93.html
   My bibliography  Save this article

Laminar flow-based fuel cell working under critical conditions: The effect of parasitic current

Author

Listed:
  • Xuan, Jin
  • Leung, Michael K.H.
  • Leung, Dennis Y.C.
  • Wang, Huizhi

Abstract

This paper presents a model integrating computational fluid dynamics (CFD) with electrochemical kinetics for predicting the performance of laminar flow-based fuel cell (LFFC). In the modeling analysis, we study the effect of parasitic current caused by the mixing of fuel and oxidant under critical operating conditions, which are between the ideal conditions without any crossover effect and the cell failure conditions due to too serious parasitic effects. The results show that the parasitic effect would cause a significant deviation of the cell performance compared with the ideal process when the LFFC is working under various critical conditions. The results also indicate that the parasitic current is an important factor for designing an efficient LFFC with high fuel utilization and high power density.

Suggested Citation

  • Xuan, Jin & Leung, Michael K.H. & Leung, Dennis Y.C. & Wang, Huizhi, 2012. "Laminar flow-based fuel cell working under critical conditions: The effect of parasitic current," Applied Energy, Elsevier, vol. 90(1), pages 87-93.
  • Handle: RePEc:eee:appene:v:90:y:2012:i:1:p:87-93
    DOI: 10.1016/j.apenergy.2011.01.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261911000055
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2011.01.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Yifei & Leung, Dennis Y.C., 2016. "A circular stacking strategy for microfluidic fuel cells with volatile methanol fuel," Applied Energy, Elsevier, vol. 184(C), pages 659-669.
    2. Samir De, Biswajit & Cunningham, Joshua & Khare, Neeraj & Luo, Jing-Li & Elias, Anastasia & Basu, Suddhasatwa, 2022. "Hydrogen generation and utilization in a two-phase flow membraneless microfluidic electrolyzer-fuel cell tandem operation for micropower application," Applied Energy, Elsevier, vol. 305(C).
    3. Ouyang, Tiancheng & Lu, Jie & Xu, Peihang & Hu, Xiaoyi & Chen, Jingxian, 2022. "High-efficiency fuel utilization innovation in microfluidic fuel cells: From liquid-feed to vapor-feed," Energy, Elsevier, vol. 240(C).
    4. Xuan, Jin & Leung, D.Y.C. & Wang, Huizhi & Leung, Michael K.H. & Wang, Bin & Ni, Meng, 2013. "Air-breathing membraneless laminar flow-based fuel cells: Do they breathe enough oxygen?," Applied Energy, Elsevier, vol. 104(C), pages 400-407.
    5. Wang, Huizhi & Leung, Dennis Y.C. & Xuan, Jin, 2013. "Modeling of a microfluidic electrochemical cell for CO2 utilization and fuel production," Applied Energy, Elsevier, vol. 102(C), pages 1057-1062.
    6. Wang, Yifei & Leung, Dennis Y.C. & Xuan, Jin & Wang, Huizhi, 2017. "A review on unitized regenerative fuel cell technologies, part B: Unitized regenerative alkaline fuel cell, solid oxide fuel cell, and microfluidic fuel cell," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 775-795.
    7. Wang, Yifei & Leung, Dennis Y.C. & Zhang, Hao & Xuan, Jin & Wang, Huizhi, 2017. "Numerical and experimental comparative study of microfluidic fuel cells with different flow configurations: Co-flow vs. counter-flow cell," Applied Energy, Elsevier, vol. 203(C), pages 535-548.
    8. Zhang, Hao & Xuan, Jin & Xu, Hong & Leung, Michael K.H. & Leung, Dennis Y.C. & Zhang, Li & Wang, Huizhi & Wang, Lei, 2013. "Enabling high-concentrated fuel operation of fuel cells with microfluidic principles: A feasibility study," Applied Energy, Elsevier, vol. 112(C), pages 1131-1137.
    9. Xu, Hong & Zhang, Hao & Wang, Huizhi & Leung, Dennis Y.C. & Zhang, Li & Cao, Jun & Jiao, Kui & Xuan, Jin, 2015. "Counter-flow formic acid microfluidic fuel cell with high fuel utilization exceeding 90%," Applied Energy, Elsevier, vol. 160(C), pages 930-936.
    10. Chen, Jingxian & Xu, Peihang & Lu, Jie & Ouyang, Tiancheng & Mo, Chunlan, 2021. "A prospective study of anti-vibration mechanism of microfluidic fuel cell via novel two-phase flow model," Energy, Elsevier, vol. 218(C).
    11. Lan, Qiao & Ye, Dingding & Zhu, Xun & Chen, Rong & Liao, Qiang, 2022. "Enhanced gas removal and cell performance of a microfluidic fuel cell by a paper separator embedded in the microchannel," Energy, Elsevier, vol. 239(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:90:y:2012:i:1:p:87-93. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.