IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v88y2011i7p2445-2453.html
   My bibliography  Save this article

Effects of porous media on thermal and salt diffusion of solar pond

Author

Listed:
  • Shi, Yufeng
  • Yin, Fang
  • Shi, Lihua
  • Wence, Sun
  • Li, Nan
  • Liu, Hong

Abstract

Laboratory and field experiments were carried out along with numerical simulations in this paper to study the effects of porous media on thermal and salt diffusion of the solar ponds. From our laboratory experiments simulating heat transfer inside a solar pond, it is shown that the addition of porous media to the bottom of a solar pond could help enhance its heat insulation effect. The experiment on salt diffusion indicates that the upward diffusion of the salt is slowed down when the porous media are added, which helps maintain the salt gradient. Our field experiments on two small-scaled solar ponds indicate that when porous media are added, the temperature in the lower convective zone (LCZ) of the solar pond is increased. It is also found that the increase in turbidity is repressed by porous media during the replenishment of the salt to the LCZ. Thermal diffusivities and conductivities of brine layers with porous media such as pebble and slag were also respectively measured in this paper based on the unsteady heat conducting principles of a semi-infinite body. These measured thermal properties were then used in our numerical simulations on the effect of porous media on thermal performance of a solar pond. Our simulation results show that brine layer with porous media plays more positive role in heat insulation effect when thermal conductivity of the ground is big. On the other hand, when the ground has a very small thermal conductivity, the performance of solar pond might be deteriorated and total heat storage quantity of solar pond might be reduced by brine layer with porous media.

Suggested Citation

  • Shi, Yufeng & Yin, Fang & Shi, Lihua & Wence, Sun & Li, Nan & Liu, Hong, 2011. "Effects of porous media on thermal and salt diffusion of solar pond," Applied Energy, Elsevier, vol. 88(7), pages 2445-2453, July.
  • Handle: RePEc:eee:appene:v:88:y:2011:i:7:p:2445-2453
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(11)00051-1
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Saxena, A.K. & Sugandhi, S. & Husain, M., 2009. "Significant depth of ground water table for thermal performance of salt gradient solar pond," Renewable Energy, Elsevier, vol. 34(3), pages 790-793.
    2. Bezir, Nalan Ç. & Dönmez, Orhan & Kayali, Refik & Özek, Nuri, 2008. "Numerical and experimental analysis of a salt gradient solar pond performance with or without reflective covered surface," Applied Energy, Elsevier, vol. 85(11), pages 1102-1112, November.
    3. Novo, Amaya V. & Bayon, Joseba R. & Castro-Fresno, Daniel & Rodriguez-Hernandez, Jorge, 2010. "Review of seasonal heat storage in large basins: Water tanks and gravel-water pits," Applied Energy, Elsevier, vol. 87(2), pages 390-397, February.
    4. Kumar, Naveen & Chavda, Tilak & Mistry, H.N., 2010. "A truncated pyramid non-tracking type multipurpose domestic solar cooker/hot water system," Applied Energy, Elsevier, vol. 87(2), pages 471-477, February.
    5. Husain, M. & Patil, P.S. & Patil, S.R. & Samdarshi, S.K., 2003. "Computer simulation of salt gradient solar pond’s thermal behaviour," Renewable Energy, Elsevier, vol. 28(5), pages 769-802.
    6. Al-Jamal, K. & Khashan, S., 1996. "Parametric study of a solar pond for Northern Jordan," Energy, Elsevier, vol. 21(10), pages 939-946.
    7. Ould Dah, M.M. & Ouni, M. & Guizani, A. & Belghith, A., 2010. "The influence of the heat extraction mode on the performance and stability of a mini solar pond," Applied Energy, Elsevier, vol. 87(10), pages 3005-3010, October.
    8. Husain, M. S. & Tiwari, G. N. & Garg, H. P., 1985. "Performance of a solar collector/storage water heater," Applied Energy, Elsevier, vol. 20(4), pages 301-316.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Suárez, Francisco & Ruskowitz, Jeffrey A. & Childress, Amy E. & Tyler, Scott W., 2014. "Understanding the expected performance of large-scale solar ponds from laboratory-scale observations and numerical modeling," Applied Energy, Elsevier, vol. 117(C), pages 1-10.
    2. Rashidi, Saman & Esfahani, Javad Abolfazli & Rashidi, Abbas, 2017. "A review on the applications of porous materials in solar energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1198-1210.
    3. Amigo, José & Suárez, Francisco, 2018. "Ground heat storage beneath salt-gradient solar ponds under constant heat demand," Energy, Elsevier, vol. 144(C), pages 657-668.
    4. Amirifard, Masoumeh & Kasaeian, Alibakhsh & Amidpour, Majid, 2018. "Integration of a solar pond with a latent heat storage system," Renewable Energy, Elsevier, vol. 125(C), pages 682-693.
    5. Prakash, J. & Siva, E.P. & Tripathi, D. & Kuharat, S. & Bég, O. Anwar, 2019. "Peristaltic pumping of magnetic nanofluids with thermal radiation and temperature-dependent viscosity effects: Modelling a solar magneto-biomimetic nanopump," Renewable Energy, Elsevier, vol. 133(C), pages 1308-1326.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ding, L.C. & Akbarzadeh, A. & Tan, L., 2018. "A review of power generation with thermoelectric system and its alternative with solar ponds," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 799-812.
    2. Amigo, José & Suárez, Francisco, 2018. "Ground heat storage beneath salt-gradient solar ponds under constant heat demand," Energy, Elsevier, vol. 144(C), pages 657-668.
    3. Husain, M. & Sharma, G. & Samdarshi, S.K., 2012. "Innovative design of non-convective zone of salt gradient solar pond for optimum thermal performance and stability," Applied Energy, Elsevier, vol. 93(C), pages 357-363.
    4. Ridha Boudhiaf & Ali Ben Moussa & Mounir Baccar, 2012. "A Two-Dimensional Numerical Study of Hydrodynamic, Heat and Mass Transfer and Stability in a Salt Gradient Solar Pond," Energies, MDPI, vol. 5(10), pages 1-22, October.
    5. Launay, S. & Kadoch, B. & Le Métayer, O. & Parrado, C., 2019. "Analysis strategy for multi-criteria optimization: Application to inter-seasonal solar heat storage for residential building needs," Energy, Elsevier, vol. 171(C), pages 419-434.
    6. El-Sebaii, A.A. & Ramadan, M.R.I. & Aboul-Enein, S. & Khallaf, A.M., 2011. "History of the solar ponds: A review study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 3319-3325, August.
    7. Sommer, Wijbrand & Valstar, Johan & Leusbrock, Ingo & Grotenhuis, Tim & Rijnaarts, Huub, 2015. "Optimization and spatial pattern of large-scale aquifer thermal energy storage," Applied Energy, Elsevier, vol. 137(C), pages 322-337.
    8. Moya, M. & Bruno, J.C. & Eguia, P. & Torres, E. & Zamora, I. & Coronas, A., 2011. "Performance analysis of a trigeneration system based on a micro gas turbine and an air-cooled, indirect fired, ammonia–water absorption chiller," Applied Energy, Elsevier, vol. 88(12), pages 4424-4440.
    9. Bozkurt, Ismail & Deniz, Sibel & Karakilcik, Mehmet & Dincer, Ibrahim, 2015. "Performance assessment of a magnesium chloride saturated solar pond," Renewable Energy, Elsevier, vol. 78(C), pages 35-41.
    10. Kim, Jongchan & Lee, Youngmin & Yoon, Woon Sang & Jeon, Jae Soo & Koo, Min-Ho & Keehm, Youngseuk, 2010. "Numerical modeling of aquifer thermal energy storage system," Energy, Elsevier, vol. 35(12), pages 4955-4965.
    11. Antoniadis, Christodoulos N. & Martinopoulos, Georgios, 2019. "Optimization of a building integrated solar thermal system with seasonal storage using TRNSYS," Renewable Energy, Elsevier, vol. 137(C), pages 56-66.
    12. Puupponen, Salla & Mikkola, Valtteri & Ala-Nissila, Tapio & Seppälä, Ari, 2016. "Novel microstructured polyol–polystyrene composites for seasonal heat storage," Applied Energy, Elsevier, vol. 172(C), pages 96-106.
    13. Amirifard, Masoumeh & Kasaeian, Alibakhsh & Amidpour, Majid, 2018. "Integration of a solar pond with a latent heat storage system," Renewable Energy, Elsevier, vol. 125(C), pages 682-693.
    14. Prasanna, U.R. & Umanand, L., 2011. "Modeling and design of a solar thermal system for hybrid cooking application," Applied Energy, Elsevier, vol. 88(5), pages 1740-1755, May.
    15. Hesaraki, Arefeh & Holmberg, Sture & Haghighat, Fariborz, 2015. "Seasonal thermal energy storage with heat pumps and low temperatures in building projects—A comparative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1199-1213.
    16. Khatri, Rahul & Goyal, Rahul & Sharma, Ravi Kumar, 2021. "Advances in the developments of solar cooker for sustainable development: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    17. Srinivas, Morapakala, 2011. "Domestic solar hot water systems: Developments, evaluations and essentials for “viability” with a special reference to India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3850-3861.
    18. Suárez, Francisco & Ruskowitz, Jeffrey A. & Childress, Amy E. & Tyler, Scott W., 2014. "Understanding the expected performance of large-scale solar ponds from laboratory-scale observations and numerical modeling," Applied Energy, Elsevier, vol. 117(C), pages 1-10.
    19. Villasmil, Willy & Fischer, Ludger J. & Worlitschek, Jörg, 2019. "A review and evaluation of thermal insulation materials and methods for thermal energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 71-84.
    20. Zamani, Hosein & Moghiman, Mohammad & Kianifar, Ali, 2015. "Optimization of the parabolic mirror position in a solar cooker using the response surface method (RSM)," Renewable Energy, Elsevier, vol. 81(C), pages 753-759.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:88:y:2011:i:7:p:2445-2453. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.