IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v88y2011i10p3295-3299.html
   My bibliography  Save this article

Growth and lipid accumulation properties of a freshwater microalga, Chlorella ellipsoidea YJ1, in domestic secondary effluents

Author

Listed:
  • Yang, Jia
  • Li, Xin
  • Hu, Hongying
  • Zhang, Xue
  • Yu, Yin
  • Chen, Yongsheng

Abstract

The combination of microalga-based biodiesel production and wastewater treatment is a promising approach to solve problems related to the energy crisis as well as eutrophication in bodies of water. A freshwater microalga, Chlorella ellipsoidea YJ1, with a high capacity for biomass production and lipid accumulation in secondary effluent was isolated. C. ellipsoidea YJ1 could achieve a biomass of 425mgL−1 (dry weight) in domestic secondary effluent treated with activated sludge technology; and the lipid content per unit of algal biomass was as high as 43% (w/w) in this condition. The lipid growth rate of C. ellipsoidea YJ1 in domestic secondary effluents could attain 11.4mg/L. Furthermore, after the cultivation of C. ellipsoidea YJ1, the removal efficiencies of nitrogen and phosphorus from the secondary effluent studied in this paper were more than 99% and 90%, respectively. Logistic and Monod models were used successfully to simulate the growth of C. ellipsoidea YJ1, and its maximum biomass and maximum population growth rate under different initial concentrations of nitrogen and phosphorus could be simulated and predicted using the models. .

Suggested Citation

  • Yang, Jia & Li, Xin & Hu, Hongying & Zhang, Xue & Yu, Yin & Chen, Yongsheng, 2011. "Growth and lipid accumulation properties of a freshwater microalga, Chlorella ellipsoidea YJ1, in domestic secondary effluents," Applied Energy, Elsevier, vol. 88(10), pages 3295-3299.
  • Handle: RePEc:eee:appene:v:88:y:2011:i:10:p:3295-3299
    DOI: 10.1016/j.apenergy.2010.11.029
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261910004927
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2010.11.029?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abinandan, S. & Shanthakumar, S., 2015. "Challenges and opportunities in application of microalgae (Chlorophyta) for wastewater treatment: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 123-132.
    2. Zharova, P.A. & Chistyakov, A.V. & Shapovalov, S.S. & Pasynskii, A.A. & Tsodikov, M.V., 2019. "Original Pt-Sn/Al2O3 catalyst for selective hydrodeoxygenation of vegetable oils," Energy, Elsevier, vol. 172(C), pages 18-25.
    3. Madan L. Verma & B. S. Dhanya & Bo Wang & Meenu Thakur & Varsha Rani & Rekha Kushwaha, 2023. "Bio-Nanoparticles Mediated Transesterification of Algal Biomass for Biodiesel Production," Sustainability, MDPI, vol. 16(1), pages 1-22, December.
    4. Bibi, Riaz & Ahmad, Zulfiqar & Imran, Muhammad & Hussain, Sabir & Ditta, Allah & Mahmood, Shahid & Khalid, Azeem, 2017. "Algal bioethanol production technology: A trend towards sustainable development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 976-985.
    5. Gao, Feng & Cui, Wei & Xu, Jing-Ping & Li, Chen & Jin, Wei-Hong & Yang, Hong-Li, 2019. "Lipid accumulation properties of Chlorella vulgaris and Scenedesmus obliquus in membrane photobioreactor (MPBR) fed with secondary effluent from municipal wastewater treatment plant," Renewable Energy, Elsevier, vol. 136(C), pages 671-676.
    6. Giovanna Salbitani & Simona Carfagna, 2021. "Ammonium Utilization in Microalgae: A Sustainable Method for Wastewater Treatment," Sustainability, MDPI, vol. 13(2), pages 1-17, January.
    7. Ana L. Gonçalves & Maria C. M. Alvim-Ferraz & Fernando G. Martins & Manuel Simões & José C. M. Pires, 2016. "Integration of Microalgae-Based Bioenergy Production into a Petrochemical Complex: Techno-Economic Assessment," Energies, MDPI, vol. 9(4), pages 1-17, March.
    8. Zhang, Tian-Yuan & Hu, Hong-Ying & Wu, Yin-Hu & Zhuang, Lin-Lan & Xu, Xue-Qiao & Wang, Xiao-Xiong & Dao, Guo-Hua, 2016. "Promising solutions to solve the bottlenecks in the large-scale cultivation of microalgae for biomass/bioenergy production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1602-1614.
    9. Pragya, Namita & Pandey, Krishan K., 2016. "Life cycle assessment of green diesel production from microalgae," Renewable Energy, Elsevier, vol. 86(C), pages 623-632.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:88:y:2011:i:10:p:3295-3299. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.