IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v83y2006i2p153-165.html
   My bibliography  Save this article

Effects of friction and temperature-dependent specific-heat of the working fluid on the performance of a Diesel-engine

Author

Listed:
  • Al-Sarkhi, A.
  • Jaber, J.O.
  • Abu-Qudais, M.
  • Probert, S.D.

Abstract

Using finite-time thermodynamics, the relations between the power output, thermal efficiency and compression ratio have been derived. The effect of the specific heat of the working fluid, being temperature dependent, on the irreversible cycle performance, is significant. The conclusions obtained in this investigation are in full agreement with those of published studies for other cycles and may be used when considering the designs of actual diesel-engines.

Suggested Citation

  • Al-Sarkhi, A. & Jaber, J.O. & Abu-Qudais, M. & Probert, S.D., 2006. "Effects of friction and temperature-dependent specific-heat of the working fluid on the performance of a Diesel-engine," Applied Energy, Elsevier, vol. 83(2), pages 153-165, February.
  • Handle: RePEc:eee:appene:v:83:y:2006:i:2:p:153-165
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(05)00009-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Lingen & Sun, Fengrui & Wu, Chih, 2004. "Optimal performance of an irreversible dual-cycle," Applied Energy, Elsevier, vol. 79(1), pages 3-14, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Antonio Lecuona & José I. Nogueira & Antonio Famiglietti, 2021. "Open Dual Cycle with Composition Change and Limited Pressure for Prediction of Miller Engines Performance and Its Turbine Temperature," Energies, MDPI, vol. 14(10), pages 1-25, May.
    2. Lin, Jiann-Chang & Hou, Shuhn-Shyurng, 2007. "Influence of heat loss on the performance of an air-standard Atkinson cycle," Applied Energy, Elsevier, vol. 84(9), pages 904-920, September.
    3. Payri, F. & Olmeda, P. & Martín, J. & García, A., 2011. "A complete 0D thermodynamic predictive model for direct injection diesel engines," Applied Energy, Elsevier, vol. 88(12), pages 4632-4641.
    4. Mousapour, Ashkan & Hajipour, Alireza & Rashidi, Mohammad Mehdi & Freidoonimehr, Navid, 2016. "Performance evaluation of an irreversible Miller cycle comparing FTT (finite-time thermodynamics) analysis and ANN (artificial neural network) prediction," Energy, Elsevier, vol. 94(C), pages 100-109.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gonca, Guven & Dobrucali, Erinc, 2016. "Theoretical and experimental study on the performance of a diesel engine fueled with diesel–biodiesel blends," Renewable Energy, Elsevier, vol. 93(C), pages 658-666.
    2. Ust, Yasin & Sahin, Bahri & Sogut, Oguz Salim, 2005. "Performance analysis and optimization of an irreversible dual-cycle based on an ecological coefficient of performance criterion," Applied Energy, Elsevier, vol. 82(1), pages 23-39, September.
    3. Mousapour, Ashkan & Hajipour, Alireza & Rashidi, Mohammad Mehdi & Freidoonimehr, Navid, 2016. "Performance evaluation of an irreversible Miller cycle comparing FTT (finite-time thermodynamics) analysis and ANN (artificial neural network) prediction," Energy, Elsevier, vol. 94(C), pages 100-109.
    4. Gonca, Guven & Sahin, Bahri & Ust, Yasin, 2013. "Performance maps for an air-standard irreversible Dual–Miller cycle (DMC) with late inlet valve closing (LIVC) version," Energy, Elsevier, vol. 54(C), pages 285-290.
    5. Lin, Jiann-Chang & Hou, Shuhn-Shyurng, 2007. "Influence of heat loss on the performance of an air-standard Atkinson cycle," Applied Energy, Elsevier, vol. 84(9), pages 904-920, September.
    6. Ust, Yasin & Arslan, Feyyaz & Ozsari, Ibrahim & Cakir, Mehmet, 2015. "Thermodynamic performance analysis and optimization of DMC (Dual Miller Cycle) cogeneration system by considering exergetic performance coefficient and total exergy output criteria," Energy, Elsevier, vol. 90(P1), pages 552-559.
    7. Ge, Yanlin & Chen, Lingen & Sun, Fengrui & Wu, Chih, 2005. "Reciprocating heat-engine cycles," Applied Energy, Elsevier, vol. 81(4), pages 397-408, August.
    8. Ust, Yasin & Sahin, Bahri & Kodal, Ali, 2007. "Optimization of a dual cycle cogeneration system based on a new exergetic performance criterion," Applied Energy, Elsevier, vol. 84(11), pages 1079-1091, November.
    9. Açıkkalp, Emin & Caner, Necmettin, 2015. "Determining of the optimum performance of a nano scale irreversible Dual cycle with quantum gases as working fluid by using different methods," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 433(C), pages 247-258.
    10. Shahriyar Abedinnezhad & Mohammad Hossein Ahmadi & Seyed Mohsen Pourkiaei & Fathollah Pourfayaz & Amir Mosavi & Michel Feidt & Shahaboddin Shamshirband, 2019. "Thermodynamic Assessment and Multi-Objective Optimization of Performance of Irreversible Dual-Miller Cycle," Energies, MDPI, vol. 12(20), pages 1-25, October.
    11. Ge, Yanlin & Chen, Lingen & Sun, Fengrui & Wu, Chih, 2006. "Performance of an Atkinson cycle with heat transfer, friction and variable specific-heats of the working fluid," Applied Energy, Elsevier, vol. 83(11), pages 1210-1221, November.
    12. Al-Sarkhi, A. & Jaber, J.O. & Probert, S.D., 2006. "Efficiency of a Miller engine," Applied Energy, Elsevier, vol. 83(4), pages 343-351, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:83:y:2006:i:2:p:153-165. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.