IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v397y2025ics0306261925010864.html

Battery technology for sustainable aviation: a review of current trends and future prospects

Author

Listed:
  • Pattanayak, Tavish
  • Mavris, Dimitri

Abstract

This comprehensive review explores the current state and prospects of battery technology in aviation, addressing the challenges and potential solutions for electrifying aircraft. It evaluates various battery chemistries, including advanced lithium-ion, solid-state, lithium–sulfur, and lithium–air batteries, with a focus on their energy densities, safety profiles, and suitability for aviation. Key challenges such as energy density limitations, power requirements, safety concerns, and environmental factors are discussed in detail. The review also highlights emerging technologies and innovative approaches, including More Electric Aircraft (MEA) concepts, hybrid-electric propulsion systems, superconducting technologies, and structural batteries. Regulatory and certification challenges are emphasized, underscoring the need for harmonized standards and adaptive frameworks. The article concludes with a future outlook, detailing the potential impact of these technologies on aircraft design, operational efficiency, and sustainability in aviation.

Suggested Citation

  • Pattanayak, Tavish & Mavris, Dimitri, 2025. "Battery technology for sustainable aviation: a review of current trends and future prospects," Applied Energy, Elsevier, vol. 397(C).
  • Handle: RePEc:eee:appene:v:397:y:2025:i:c:s0306261925010864
    DOI: 10.1016/j.apenergy.2025.126356
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261925010864
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.126356?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Xu, Bin & Lee, Jinwoo & Kwon, Daeil & Kong, Lingxi & Pecht, Michael, 2021. "Mitigation strategies for Li-ion battery thermal runaway: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    2. Abbas Fotouhi & Daniel J. Auger & Laura O’Neill & Tom Cleaver & Sylwia Walus, 2017. "Lithium-Sulfur Battery Technology Readiness and Applications—A Review," Energies, MDPI, vol. 10(12), pages 1-15, November.
    3. Venkatasubramanian Viswanathan & Alan H. Epstein & Yet-Ming Chiang & Esther Takeuchi & Marty Bradley & John Langford & Michael Winter, 2022. "Author Correction: The challenges and opportunities of battery-powered flight," Nature, Nature, vol. 603(7903), pages 30-30, March.
    4. Venkatasubramanian Viswanathan & Alan H. Epstein & Yet-Ming Chiang & Esther Takeuchi & Marty Bradley & John Langford & Michael Winter, 2022. "The challenges and opportunities of battery-powered flight," Nature, Nature, vol. 601(7894), pages 519-525, January.
    5. Elitza Karadotcheva & Sang N. Nguyen & Emile S. Greenhalgh & Milo S. P. Shaffer & Anthony R. J. Kucernak & Peter Linde, 2021. "Structural Power Performance Targets for Future Electric Aircraft," Energies, MDPI, vol. 14(19), pages 1-30, September.
    6. Sofia Pinheiro Melo & Alexander Barke & Felipe Cerdas & Christian Thies & Mark Mennenga & Thomas S. Spengler & Christoph Herrmann, 2020. "Sustainability Assessment and Engineering of Emerging Aircraft Technologies—Challenges, Methods and Tools," Sustainability, MDPI, vol. 12(14), pages 1-27, July.
    7. Ruan, Haijun & Jiang, Jiuchun & Sun, Bingxiang & Su, Xiaojia & He, Xitian & Zhao, Kejie, 2019. "An optimal internal-heating strategy for lithium-ion batteries at low temperature considering both heating time and lifetime reduction," Applied Energy, Elsevier, vol. 256(C).
    8. Gavin Harper & Roberto Sommerville & Emma Kendrick & Laura Driscoll & Peter Slater & Rustam Stolkin & Allan Walton & Paul Christensen & Oliver Heidrich & Simon Lambert & Andrew Abbott & Karl Ryder & L, 2019. "Recycling lithium-ion batteries from electric vehicles," Nature, Nature, vol. 575(7781), pages 75-86, November.
    9. Rao, Zhonghao & Wang, Shuangfeng, 2011. "A review of power battery thermal energy management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4554-4571.
    10. J.-M. Tarascon & M. Armand, 2001. "Issues and challenges facing rechargeable lithium batteries," Nature, Nature, vol. 414(6861), pages 359-367, November.
    11. Arumugam Manthiram, 2020. "A reflection on lithium-ion battery cathode chemistry," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    12. Peters, Jens F. & Baumann, Manuel & Zimmermann, Benedikt & Braun, Jessica & Weil, Marcel, 2017. "The environmental impact of Li-Ion batteries and the role of key parameters – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 491-506.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Md Nasir Uddin & Feng Wang, 2025. "Sustainable Aviation Fuels: A Review of Current Techno Economic Viability and Life Cycle Impacts," Energies, MDPI, vol. 18(20), pages 1-46, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin, Xiang-Wei & Li, Yu-Bai & Wu, Wei-Tao & Zhou, Zhi-Fu & Chen, Bin, 2024. "Advances on two-phase heat transfer for lithium-ion battery thermal management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    2. Geng, Shuanglong & Zhang, Kai & Zheng, Bailin, 2025. "Prospects and challenges of application of structural battery in vehicles," Applied Energy, Elsevier, vol. 394(C).
    3. Yifan, Zheng & Sida, Zhou & Zhengjie, Zhang & Xinan, Zhou & Rui, Cao & Qiangwei, Li & Zichao, Gao & Chengcheng, Fan & Shichun, Yang, 2024. "A capacity fade reliability model for lithium-ion battery packs based on real-vehicle data," Energy, Elsevier, vol. 307(C).
    4. Zhou, Yuekuan, 2024. "Lifecycle battery carbon footprint analysis for battery sustainability with energy digitalization and artificial intelligence," Applied Energy, Elsevier, vol. 371(C).
    5. Zhi, Maoyong & Fan, Rong & Zheng, Lingling & Yue, Shan & Pan, Zhiheng & Sun, Qiang & Liu, Quanyi, 2024. "Experimental investigation on hydrated salt phase change material for lithium-ion battery thermal management and thermal runaway mitigation," Energy, Elsevier, vol. 307(C).
    6. Suresh, C. & Awasthi, Abhishek & Kumar, Binit & Im, Seong-kyun & Jeon, Yongseok, 2025. "Advances in battery thermal management for electric vehicles: A comprehensive review of hybrid PCM-metal foam and immersion cooling technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 208(C).
    7. Christensen, Paul A. & Anderson, Paul A. & Harper, Gavin D.J. & Lambert, Simon M. & Mrozik, Wojciech & Rajaeifar, Mohammad Ali & Wise, Malcolm S. & Heidrich, Oliver, 2021. "Risk management over the life cycle of lithium-ion batteries in electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    8. Oda, Hiromu & Noguchi, Hiroki & Fuse, Masaaki, 2022. "Review of life cycle assessment for automobiles: A meta-analysis-based approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    9. Nyangon, Joseph & Darekar, Ayesha, 2024. "Advancements in hydrogen energy systems: A review of levelized costs, financial incentives and technological innovations," Innovation and Green Development, Elsevier, vol. 3(3).
    10. Lu, Fenglian & Chen, Weiye & Hu, Shuzhi & Chen, Lei & Sharshir, Swellam W. & Dong, Chuanshuai & Zhang, Lizhi, 2024. "Achieving a smart thermal management for lithium-ion batteries by electrically-controlled crystallization of supercooled calcium chloride hexahydrate solution," Applied Energy, Elsevier, vol. 364(C).
    11. Kakodkar, R. & He, G. & Demirhan, C.D. & Arbabzadeh, M. & Baratsas, S.G. & Avraamidou, S. & Mallapragada, D. & Miller, I. & Allen, R.C. & Gençer, E. & Pistikopoulos, E.N., 2022. "A review of analytical and optimization methodologies for transitions in multi-scale energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    12. Victor Osvaldo Vega-Muratalla & César Ramírez-Márquez & Luis Fernando Lira-Barragán & José María Ponce-Ortega, 2024. "Review of Lithium as a Strategic Resource for Electric Vehicle Battery Production: Availability, Extraction, and Future Prospects," Resources, MDPI, vol. 13(11), pages 1-20, October.
    13. Pitchai Ragupathy & Santoshkumar Dattatray Bhat & Nallathamby Kalaiselvi, 2023. "Electrochemical energy storage and conversion: An overview," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 12(2), March.
    14. Pishdadian Hassan & Aubertin Alain & Turkina Ekaterina & Cohendet Patrick & Simon Laurent, 2025. "How aerospace clusters respond to the challenge of sustainability: a comparison of the Toulouse and Montreal clusters," ZFW – Advances in Economic Geography, De Gruyter, vol. 69(1), pages 24-40.
    15. Mastoi, Muhammad Shahid & Wang, Delin & Zhou, Xin & He, Xin & Hassan, Mannan & Ali, Asif & Rehman, Amir, 2025. "Study of energy storage technology approaches for mitigating wind power fluctuations to enhance smart grid resilience," Renewable and Sustainable Energy Reviews, Elsevier, vol. 224(C).
    16. Maria Cecília Costa Lima & Luana Pereira Pontes & Andrea Sarmento Maia Vasconcelos & Washington de Araujo Silva Junior & Kunlin Wu, 2022. "Economic Aspects for Recycling of Used Lithium-Ion Batteries from Electric Vehicles," Energies, MDPI, vol. 15(6), pages 1-19, March.
    17. Wahab, Abdul & Najmi, Aezid-Ul-Hassan & Senobar, Hossein & Amjady, Nima & Kemper, Hans & Khayyam, Hamid, 2025. "Immersion cooling innovations and critical hurdles in Li-ion battery cooling for future electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 211(C).
    18. Gutsch, Moritz & Leker, Jens, 2024. "Costs, carbon footprint, and environmental impacts of lithium-ion batteries – From cathode active material synthesis to cell manufacturing and recycling," Applied Energy, Elsevier, vol. 353(PB).
    19. Hee Seung Moon & Won Young Park & Thomas Hendrickson & Amol Phadke & Natalie Popovich, 2025. "Exploring the cost and emissions impacts, feasibility and scalability of battery electric ships," Nature Energy, Nature, vol. 10(1), pages 41-54, January.
    20. Guanjun Ji & Di Tang & Junxiong Wang & Zheng Liang & Haocheng Ji & Jun Ma & Zhaofeng Zhuang & Song Liu & Guangmin Zhou & Hui-Ming Cheng, 2024. "Sustainable upcycling of mixed spent cathodes to a high-voltage polyanionic cathode material," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:397:y:2025:i:c:s0306261925010864. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.