IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v392y2025ics0306261925007664.html
   My bibliography  Save this article

Long-term deep geothermal energy reservoir beneath East Africa: Insights from seismic tomography

Author

Listed:
  • Wamba, M.D.
  • Nchare, Karim

Abstract

We identify a long-term geothermal energy source in East Africa that is derived from a seismic tomography model that was built using a combination of a new dataset from a seismic network installed in the Indian Ocean and data from the International Federation of Digital Seismograph Networks. A heat reservoir extending laterally for about 4000 km within the lithosphere beneath East Africa is identified as a long-lived geothermal energy source that can last for millions of years. The temperature assessment reveals that the reservoir has excess temperatures ranging from ∼100 ∘C–146 ∘C relative to the surrounding ambient mantle at a depth of 50 km. The heat flow at the base of the Earth’s crust is an indicator of heat transfer to the Earth’s surface. For exploration purposes, the geolocation of target points with the highest subsurface temperature potential is provided. The economic and financial implications of the identified large heat reservoir for the development of geothermal energy in East Africa are discussed.

Suggested Citation

  • Wamba, M.D. & Nchare, Karim, 2025. "Long-term deep geothermal energy reservoir beneath East Africa: Insights from seismic tomography," Applied Energy, Elsevier, vol. 392(C).
  • Handle: RePEc:eee:appene:v:392:y:2025:i:c:s0306261925007664
    DOI: 10.1016/j.apenergy.2025.126036
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261925007664
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.126036?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Claudio Pasqua & Paolo Chiozzi & Massimo Verdoya, 2023. "Geothermal Play Types along the East Africa Rift System: Examples from Ethiopia, Kenya and Tanzania," Energies, MDPI, vol. 16(4), pages 1-16, February.
    2. Ezekiel, Justin & Vahrenkamp, Volker & Hoteit, Hussein A. & Finkbeiner, Thomas & Mai, P. Martin, 2024. "Techno-economic assessment of large-scale sedimentary basin stored–CO2 geothermal power generation," Applied Energy, Elsevier, vol. 376(PB).
    3. Xue, Zhenqian & Ma, Haoming & Wei, Yizheng & Wu, Wei & Sun, Zhe & Chai, Maojie & Zhang, Chi & Chen, Zhangxin, 2024. "Integrated technological and economic feasibility comparisons of enhanced geothermal systems associated with carbon storage," Applied Energy, Elsevier, vol. 359(C).
    4. Xie, Jingxuan & Wang, Jiansheng, 2022. "Compatibility investigation and techno-economic performance optimization of whole geothermal power generation system," Applied Energy, Elsevier, vol. 328(C).
    5. Hu, Tao & Zhang, Jun & Su, Liangbin & Wang, Gang & Yu, Wan & Su, Huashan & Xiao, Renzheng, 2024. "Performance optimization and techno-economic analysis of a novel geothermal system," Energy, Elsevier, vol. 301(C).
    6. Ayub, Mohammad & Mitsos, Alexander & Ghasemi, Hadi, 2015. "Thermo-economic analysis of a hybrid solar-binary geothermal power plant," Energy, Elsevier, vol. 87(C), pages 326-335.
    7. Elbarbary, Samah & Abdel Zaher, Mohamed & Saibi, Hakim & Fowler, Abdel-Rahman & Ravat, Dhananjay & Marzouk, Hossam, 2022. "Thermal structure of the African continent based on magnetic data: Future geothermal renewable energy explorations in Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    8. Li, Tailu & Zhang, Yao & Li, Xuelong & Yuan, Ye, 2024. "Techno-economic comparison of organic fluid between single- and dual-flash for geothermal power generation enhancement," Renewable Energy, Elsevier, vol. 231(C).
    9. Idroes, Ghalieb Mutig & Hardi, Irsan & Hilal, Iin Shabrina & Utami, Resty Tamara & Noviandy, Teuku Rizky & Idroes, Rinaldi, 2024. "Economic growth and environmental impact: Assessing the role of geothermal energy in developing and developed countries," Innovation and Green Development, Elsevier, vol. 3(3).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Evangeline, S. Ida & Darwin, S., 2025. "The role of carbon dioxide in enhancing geothermal energy: A review of current developments and future potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 214(C).
    2. Ma, Weiwu & Xu, Yifan & Ahmed, Shams Forruque & Yang, Chong & Liu, Gang, 2024. "Techno-economic optimization of enhanced geothermal systems with multi-well fractured reservoirs via geothermal economic ratio," Energy, Elsevier, vol. 311(C).
    3. Leng, Yuchi & Li, Shuguang & Elmasry, Yasser & Garalleh, Hakim AL & Afandi, Abdulkareem & Alzubaidi, Laith H. & Alkhalaf, Salem & Abdullaev, Sherzod & Alharbi, Fawaz S., 2024. "Modeling of calculations on the performance optimization of a double-flash geothermal renewable energy-based combined heat/power plant coupled by transcritical carbon dioxide rankine cycle," Renewable Energy, Elsevier, vol. 237(PA).
    4. DeLovato, Nicolas & Sundarnath, Kavin & Cvijovic, Lazar & Kota, Krishna & Kuravi, Sarada, 2019. "A review of heat recovery applications for solar and geothermal power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    5. Jaszczur, Marek & Hassan, Qusay & Palej, Patryk & Abdulateef, Jasim, 2020. "Multi-Objective optimisation of a micro-grid hybrid power system for household application," Energy, Elsevier, vol. 202(C).
    6. Yanara Tranamil-Maripe & José M. Cardemil & Rodrigo Escobar & Diego Morata & Cristóbal Sarmiento-Laurel, 2022. "Assessing the Hybridization of an Existing Geothermal Plant by Coupling a CSP System for Increasing Power Generation," Energies, MDPI, vol. 15(6), pages 1-28, March.
    7. Wang, Gang & Zhang, Zhen & Lin, Jianqing, 2024. "Multi-energy complementary power systems based on solar energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    8. Boukelia, T.E. & Arslan, O. & Djimli, S. & Kabar, Y., 2023. "ORC fluids selection for a bottoming binary geothermal power plant integrated with a CSP plant," Energy, Elsevier, vol. 265(C).
    9. Chitgar, Nazanin & Karami, Pooria & Hemmati, Arman & Sadrzadeh, Mohtada, 2025. "A multi-carrier energy system for electricity, desalinated water, and hydrogen production: Conceptual design and techno-economic optimization," Renewable Energy, Elsevier, vol. 243(C).
    10. Raihan, Asif & Rahman, Syed Masiur & Sarker, Tapan, 2025. "Saudi Arabia's path to carbon neutrality: Analysis of the role of Hajj pilgrimage, energy consumption, and economic growth," Innovation and Green Development, Elsevier, vol. 4(1).
    11. Yuan Li & Paul P. J. Gaffney & Fang Zhao & Xiangbo Xu & Mingbo Zhang, 2024. "Application of Life Cycle Assessment to Policy Environmental Impact Assessment—A Clean Energy Action Plan Case Study in Qinghai Region," Sustainability, MDPI, vol. 17(1), pages 1-21, December.
    12. Wang, Zhipeng & Ning, Zhengfu & Guo, Wenting & Zhan, Jie & Chen, Zhangxin, 2024. "DC electric field assisted heat extraction evaluation via water circulation in abandoned production well patterns: Semi-analytical and numerical models," Renewable Energy, Elsevier, vol. 228(C).
    13. R.V., Rohit & R., Vipin Raj & Kiplangat, Dennis C. & R., Veena & Jose, Rajan & Pradeepkumar, A.P. & Kumar, K. Satheesh, 2023. "Tracing the evolution and charting the future of geothermal energy research and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    14. Kosmadakis, George & Neofytou, Panagiotis, 2020. "Investigating the performance and cost effects of nanorefrigerants in a low-temperature ORC unit for waste heat recovery," Energy, Elsevier, vol. 204(C).
    15. Sadeghpour, Farshad, 2025. "Storage efficiency prediction for feasibility assessment of underground CO2 storage: Novel machine learning approaches," Energy, Elsevier, vol. 324(C).
    16. Wang, Di & Han, Xinrui & Li, Haoyu & Li, Xiaoli, 2023. "Dynamic simulation and parameter analysis of solar-coal hybrid power plant based on the supercritical CO2 Brayton cycle," Energy, Elsevier, vol. 272(C).
    17. Powell, Kody M. & Rashid, Khalid & Ellingwood, Kevin & Tuttle, Jake & Iverson, Brian D., 2017. "Hybrid concentrated solar thermal power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 215-237.
    18. Hao, Ruijun & Hao, Yongsheng & Zhang, Junli & Zhang, Hongsheng, 2025. "Techno-economic evaluation on a new integration of air-cooled coal-fired power plant and dual-pressure organic Rankine cycle for cold-side waste heat recovery," Energy, Elsevier, vol. 327(C).
    19. Brady Bokelman & Efstathios E. Michaelides & Dimitrios N. Michaelides, 2020. "A Geothermal-Solar Hybrid Power Plant with Thermal Energy Storage," Energies, MDPI, vol. 13(5), pages 1-19, February.
    20. Szturgulewski, Kacper & Głuch, Jerzy & Drosińska-Komor, Marta & Ziółkowski, Paweł & Gardzilewicz, Andrzej & Brzezińska-Gołębiewska, Katarzyna, 2024. "Hybrid geothermal-fossil power cycle analysis in a Polish setting with a focus on off-design performance and CO2 emissions reductions," Energy, Elsevier, vol. 299(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:392:y:2025:i:c:s0306261925007664. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.