IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v390y2025ics0306261925005732.html
   My bibliography  Save this article

Speed-prediction-based hierarchical energy management and operating cost analysis for fuel cell hybrid logistic vehicles

Author

Listed:
  • Zhou, Yang
  • Guo, Yansiqi
  • Yang, Fan
  • Chen, Bo
  • Ma, Ruiqing
  • Ma, Rui
  • Jiang, Wentao
  • Bai, Hao

Abstract

This paper devises a generalized two-layer predictive energy management strategy with a comprehensive operating cost analysis for fuel cell logistic vehicles under different application scenarios. In the upper layer, an improved speed predictor based on long-and-short-term memory neural network and fuzzy C-means clustering is proposed, which can recognize driving states in real time and select corresponding sub-models for speed forecasting. In the lower layer, a multi-objective cost function including hydrogen consumption cost and power-source degradation cost is established and the optimal control action is derived within each receding horizon using sequential quadratic programming. Moreover, the performance discrepancies caused by various factors such as optimization weighting coefficients, prediction horizon length, velocity prediction methods and solution method are analyzed. Compared with benchmark strategies, the proposed strategy could reduce vehicular total operating cost by 0.76 %–32.83 % and fuel cell aging cost by 0.75 %–16.04 % across all the cycles. In addition, the operating cost distribution law with respect to different logistic vehicle types and different component sizes are analyzed via a comparative study, which could be used as a guideline for prospective designers in control strategy development.

Suggested Citation

  • Zhou, Yang & Guo, Yansiqi & Yang, Fan & Chen, Bo & Ma, Ruiqing & Ma, Rui & Jiang, Wentao & Bai, Hao, 2025. "Speed-prediction-based hierarchical energy management and operating cost analysis for fuel cell hybrid logistic vehicles," Applied Energy, Elsevier, vol. 390(C).
  • Handle: RePEc:eee:appene:v:390:y:2025:i:c:s0306261925005732
    DOI: 10.1016/j.apenergy.2025.125843
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261925005732
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.125843?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Huicui & Pei, Pucheng & Song, Mancun, 2015. "Lifetime prediction and the economic lifetime of Proton Exchange Membrane fuel cells," Applied Energy, Elsevier, vol. 142(C), pages 154-163.
    2. Hu, Xiaosong & Johannesson, Lars & Murgovski, Nikolce & Egardt, Bo, 2015. "Longevity-conscious dimensioning and power management of the hybrid energy storage system in a fuel cell hybrid electric bus," Applied Energy, Elsevier, vol. 137(C), pages 913-924.
    3. Zhou, Yang & Ravey, Alexandre & Péra, Marie-Cecile, 2020. "Multi-mode predictive energy management for fuel cell hybrid electric vehicles using Markov driving pattern recognizer," Applied Energy, Elsevier, vol. 258(C).
    4. Feng, Yanbiao & Dong, Zuomin, 2020. "Integrated design and control optimization of fuel cell hybrid mining truck with minimized lifecycle cost," Applied Energy, Elsevier, vol. 270(C).
    5. Anselma, Pier Giuseppe & Belingardi, Giovanni, 2022. "Fuel cell electrified propulsion systems for long-haul heavy-duty trucks: present and future cost-oriented sizing," Applied Energy, Elsevier, vol. 321(C).
    6. Sheng, Chuang & Guo, Ziang & Lei, Jingzhi & Zhang, Shuyu & Zhang, Wenxuan & Chen, Weiming & Jiang, Xuefeng & Wang, Zhuo & Li, Xi, 2024. "Optimal energy management strategies for hybrid power systems considering Pt degradation," Applied Energy, Elsevier, vol. 360(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fujian Liu & Qiao Zhu & Dawei Dong & Zhichao Zhao & Xiuping Zhu & Kunyi Feng & Haifeng Dai & Hao Yuan, 2025. "Energy Consumption Analysis of Fuel Cell Commercial Heavy-Duty Truck with Waste Heat Utilization Under Low-Temperature Environment," Energies, MDPI, vol. 18(11), pages 1-19, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yixv Qin & Zhongxing Li & Guoqing Geng & Bo Wang, 2025. "Approximate Globally Optimal Energy Management Strategy for Fuel Cell Hybrid Mining Trucks Based on Rule-Interposing Balance Cost Minimization," Sustainability, MDPI, vol. 17(4), pages 1-28, February.
    2. Sanghyun Yun & Jinwon Yun & Jaeyoung Han, 2023. "Development of a 470-Horsepower Fuel Cell–Battery Hybrid Xcient Dynamic Model Using Simscape TM," Energies, MDPI, vol. 16(24), pages 1-22, December.
    3. Wu, Jinglai & Zhang, Yunqing & Ruan, Jiageng & Liang, Zhaowen & Liu, Kai, 2023. "Rule and optimization combined real-time energy management strategy for minimizing cost of fuel cell hybrid electric vehicles," Energy, Elsevier, vol. 285(C).
    4. Lorenzo, Charles & Bouquain, David & Hibon, Samuel & Hissel, Daniel, 2021. "Synthesis of degradation mechanisms and of their impacts on degradation rates on proton-exchange membrane fuel cells and lithium-ion nickel–manganese–cobalt batteries in hybrid transport applicati," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    5. Huang, Yiyuan & Luo, Maji & Jiang, Kun & Wang, Chuan & Tu, Faping & Huang, Miaohua, 2025. "Comprehensive performance evaluation of air-assisted atomization humidification for high-power fuel cell systems," Applied Energy, Elsevier, vol. 377(PD).
    6. Tang, Xiaolin & Zhou, Haitao & Wang, Feng & Wang, Weida & Lin, Xianke, 2022. "Longevity-conscious energy management strategy of fuel cell hybrid electric Vehicle Based on deep reinforcement learning," Energy, Elsevier, vol. 238(PA).
    7. Superchi, Francesco & Moustakis, Antonis & Pechlivanoglou, George & Bianchini, Alessandro, 2025. "On the importance of degradation modeling for the robust design of hybrid energy systems including renewables and storage," Applied Energy, Elsevier, vol. 377(PD).
    8. Xun, Qian & Murgovski, Nikolce & Liu, Yujing, 2022. "Chance-constrained robust co-design optimization for fuel cell hybrid electric trucks," Applied Energy, Elsevier, vol. 320(C).
    9. Tom Fletcher & Kambiz Ebrahimi, 2020. "The Effect of Fuel Cell and Battery Size on Efficiency and Cell Lifetime for an L7e Fuel Cell Hybrid Vehicle," Energies, MDPI, vol. 13(22), pages 1-18, November.
    10. Hou, Shengyan & Yin, Hai & Xu, Fuguo & Benjamín, Pla & Gao, Jinwu & Chen, Hong, 2023. "Multihorizon predictive energy optimization and lifetime management for connected fuel cell electric vehicles," Energy, Elsevier, vol. 266(C).
    11. Menglin Li & Haoran Liu & Mei Yan & Hongyang Xu & Hongwen He, 2022. "A Novel Multi-Objective Energy Management Strategy for Fuel Cell Buses Quantifying Fuel Cell Degradation as Operating Cost," Sustainability, MDPI, vol. 14(23), pages 1-16, December.
    12. Zuo, Jian & Steiner, Nadia Yousfi & Li, Zhongliang & Hissel, Daniel, 2024. "Health management review for fuel cells: Focus on action phase," Renewable and Sustainable Energy Reviews, Elsevier, vol. 201(C).
    13. Zhang, Zhendong & He, Hongwen & Quan, Shengwei & Chen, Jinzhou & Han, Ruoyan, 2024. "Multi-parameter and multi-objective optimization of dual-fuel cell system heavy-duty vehicles: Sizing for serial development," Energy, Elsevier, vol. 308(C).
    14. Wu, Peng & Partridge, Julius & Bucknall, Richard, 2020. "Cost-effective reinforcement learning energy management for plug-in hybrid fuel cell and battery ships," Applied Energy, Elsevier, vol. 275(C).
    15. Song, Ke & Ding, Yuhang & Hu, Xiao & Xu, Hongjie & Wang, Yimin & Cao, Jing, 2021. "Degradation adaptive energy management strategy using fuel cell state-of-health for fuel economy improvement of hybrid electric vehicle," Applied Energy, Elsevier, vol. 285(C).
    16. Huang, Yin & Kang, Zehao & Mao, Xuping & Hu, Haoqin & Tan, Jiaqi & Xuan, Dongji, 2023. "Deep reinforcement learning based energymanagement strategy considering running costs and energy source aging for fuel cell hybrid electric vehicle," Energy, Elsevier, vol. 283(C).
    17. Najmi, Aezid-Ul-Hassan & Wahab, Abdul & Prakash, Rohith & Schopen, Oliver & Esch, Thomas & Shabani, Bahman, 2025. "Thermal management of fuel cell-battery electric vehicles: Challenges and solutions," Applied Energy, Elsevier, vol. 387(C).
    18. Pregelj, Boštjan & Micor, Michał & Dolanc, Gregor & Petrovčič, Janko & Jovan, Vladimir, 2016. "Impact of fuel cell and battery size to overall system performance – A diesel fuel-cell APU case study," Applied Energy, Elsevier, vol. 182(C), pages 365-375.
    19. Eckert, Jony Javorski & Silva, Fabrício L. & da Silva, Samuel Filgueira & Bueno, André Valente & de Oliveira, Mona Lisa Moura & Silva, Ludmila C.A., 2022. "Optimal design and power management control of hybrid biofuel–electric powertrain," Applied Energy, Elsevier, vol. 325(C).
    20. Farouk Odeim & Jürgen Roes & Angelika Heinzel, 2015. "Power Management Optimization of an Experimental Fuel Cell/Battery/Supercapacitor Hybrid System," Energies, MDPI, vol. 8(7), pages 1-26, June.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:390:y:2025:i:c:s0306261925005732. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.