IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v390y2025ics0306261925005288.html
   My bibliography  Save this article

Experimental study and performance evaluation of a large-scale multistage metal hydride-based hydrogen compressor

Author

Listed:
  • Parida, Abhishek
  • Kumar, Alok
  • Muthukumar, P.
  • Dalal, Amaresh
  • Kumar, Shanta

Abstract

Hydrogen is crucial for a sustainable energy future, serving as a clean energy carrier. Efficient compression is vital for its effective storage and transport. This study details the design and development of an industrial-scale setup for green hydrogen compression using a Metal Hydride Hydrogen Compressor (MHHC) integrated with renewable thermal system. The system is designed to compress hydrogen from an initial pressure of 10–20 bar to over 250 bar, utilizing thermal energy inputs available at temperature below 100 °C. In this study, 550 g of hydrogen was compressed to 300 bar within the reactor in three stages between the temperature range of 5–91.2 °C, making it suitable for coupling with solar thermal systems. The stage 1 reactor, containing 25 kg of La0.8Ce0.2Ni5, absorbed 307 g of hydrogen in 44.6 min and transferred 288 g (93.8% reversibility) to the stage 2 reactor, which contained an equivalent mass of La0.5Ce0.5Ni4Fe. Finally, 275.5 g of hydrogen was transferred to the stage 3 reactor, consisting of Ti0.8Zr0.2CrMn0.3Fe0.6Ni0.1. The absorbed hydrogen was then heated to 91.2 °C to attain a pressure of 300 bar. The system required 36.2 MJ (10.1 kWh) of thermal energy to complete one compression cycle for 275.5 g of hydrogen, achieving a first law efficiency of ∼5%. At a Hydrogen Refueling Station (HRS) using the developed MHHC system, refilling a Type I H2 cylinder up to 155 bar would require four refills transferring about 466 g of hydrogen in 34.34 min.

Suggested Citation

  • Parida, Abhishek & Kumar, Alok & Muthukumar, P. & Dalal, Amaresh & Kumar, Shanta, 2025. "Experimental study and performance evaluation of a large-scale multistage metal hydride-based hydrogen compressor," Applied Energy, Elsevier, vol. 390(C).
  • Handle: RePEc:eee:appene:v:390:y:2025:i:c:s0306261925005288
    DOI: 10.1016/j.apenergy.2025.125798
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261925005288
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.125798?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Feng, Penghui & Liu, Yang & Ayub, Iqra & Wu, Zhen & Yang, Fusheng & Zhang, Zaoxiao, 2019. "Techno-economic analysis of screening metal hydride pairs for a 910 MWhth thermal energy storage system," Applied Energy, Elsevier, vol. 242(C), pages 148-156.
    2. Sdanghi, G. & Maranzana, G. & Celzard, A. & Fierro, V., 2019. "Review of the current technologies and performances of hydrogen compression for stationary and automotive applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 150-170.
    3. Melnik, Daniel & Bürger, Inga & Mitzel, Jens & Käß, Julian & Sarkezi-Selsky, Patrick & Jahnke, Thomas & Knöri, Torsten, 2024. "Energy efficient cold start of a Polymer Electrolyte Membrane Fuel Cell coupled to a thermochemical metal hydride preheater," Applied Energy, Elsevier, vol. 359(C).
    4. Dong, Xiaofei & Zhao, Hongxia & Li, Hailong & Fucucci, Giacomo & Zheng, Qingrong & Zhao, Honghua & Pu, Jinhuan, 2024. "A novel design of a metal hydride reactor integrated with phase change material for H2 storage," Applied Energy, Elsevier, vol. 367(C).
    5. Wang, Di & Wang, Yuqi & Wang, Feng & Zheng, Shuaishuai & Guan, Sinan & Zheng, Lan & Wu, Le & Yang, Xin & Lv, Ming & Zhang, Zaoxiao, 2022. "Optimal design of disc mini-channel metal hydride reactor with high hydrogen storage efficiency," Applied Energy, Elsevier, vol. 308(C).
    6. Ye, Yang & Zhu, Hongxing & Cheng, Honghui & Miao, Hong & Ding, Jing & Wang, Weilong, 2023. "Performance optimization of metal hydride hydrogen storage reactors based on PCM thermal management," Applied Energy, Elsevier, vol. 338(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maggini, Marco & Facci, Andrea L. & Falcucci, Giacomo & Ubertini, Stefano, 2025. "Numerical Modeling of Metal Hydride-Phase Change Material Hydrogen Storage Systems with Increased Heat Exchange surface area," Applied Energy, Elsevier, vol. 378(PA).
    2. Yang Ye & Ziyang Zhang & Yuanyuan Zhang & Jingjing Liu & Kai Yan & Honghui Cheng, 2024. "Parametric Analysis of a Novel Array-Type Hydrogen Storage Reactor with External Water-Cooled Jacket Heat Exchange," Energies, MDPI, vol. 17(21), pages 1-12, October.
    3. Zhao, Yaling & Zhao, Bin & Yao, Yanchen & Jia, Xiaohan & Peng, Xueyuan, 2024. "Experimental study and sensitivity analysis of performance for a hydrogen diaphragm compressor," Renewable Energy, Elsevier, vol. 237(PD).
    4. Guo, Yi & Tang, Yuming & Wang, Lingzi & Wang, Yuli & Peng, Xueyuan, 2024. "Optimal design of operating frequency for the ionic liquid compressor applied in hydrogen storage," Renewable Energy, Elsevier, vol. 237(PB).
    5. Krishna, K. Venkata & Kanti, Praveen Kumar & Maiya, M.P., 2024. "A novel fin efficiency concept to optimize solid state hydrogen storage reactor," Energy, Elsevier, vol. 288(C).
    6. Laugs, Gideon A.H. & Benders, René M.J. & Moll, Henri C., 2024. "Maximizing self-sufficiency and minimizing grid interaction: Combining electric and molecular energy storage for decentralized balancing of variable renewable energy in local energy systems," Renewable Energy, Elsevier, vol. 229(C).
    7. Rafael Pereira & Vitor Monteiro & Joao L. Afonso & Joni Teixeira, 2024. "Hydrogen Refueling Stations: A Review of the Technology Involved from Key Energy Consumption Processes to Related Energy Management Strategies," Energies, MDPI, vol. 17(19), pages 1-16, September.
    8. Volker Dreißigacker & Andrea Gutierrez, 2024. "Latent Thermal Energy Storage for Cooling Demands in Battery Electric Vehicles: Development of a Dimensionless Model for the Identification of Effective Heat-Transferring Structures," Energies, MDPI, vol. 17(24), pages 1-17, December.
    9. Andrea Pietra & Marco Gianni & Nicola Zuliani & Stefano Malabotti & Rodolfo Taccani, 2021. "Experimental Characterization of an Alkaline Electrolyser and a Compression System for Hydrogen Production and Storage," Energies, MDPI, vol. 14(17), pages 1-17, August.
    10. Zheng, Shuaishuai & Wang, Yuqi & Wang, Di & Guan, Sinan & Liu, Ying & Wang, Feng & Zheng, Lan & Wu, Le & Gao, Xiong & Zhang, Zaoxiao, 2023. "Design and performance study on the primary & secondary helical-tube reactor," Energy, Elsevier, vol. 263(PD).
    11. Ye, Yang & Zhu, Hongxing & Cheng, Honghui & Miao, Hong & Ding, Jing & Wang, Weilong, 2023. "Performance optimization of metal hydride hydrogen storage reactors based on PCM thermal management," Applied Energy, Elsevier, vol. 338(C).
    12. Kim, Min Soo & Chu, Chan Ho & Kim, Young Ki & Kim, Minsung & Lee, Do Hyun & Kim, Seonyeob & Kim, Dong Kyu, 2024. "Analysis of internal behavior of electrochemical hydrogen compressors at high pressures," Renewable Energy, Elsevier, vol. 234(C).
    13. Meriläinen, Altti & Montonen, Jan-Henri & Hopsu, Jeremias & Kosonen, Antti & Lindh, Tuomo & Ahola, Jero, 2023. "Power balance control and dimensioning of a hybrid off-grid energy system for a Nordic climate townhouse," Renewable Energy, Elsevier, vol. 209(C), pages 310-324.
    14. Bruce J. Hardy & Claudio Corgnale & Stephanie N. Gamble, 2021. "Operating Characteristics of Metal Hydride-Based Solar Energy Storage Systems," Sustainability, MDPI, vol. 13(21), pages 1-14, November.
    15. Matteo Genovese & Viviana Cigolotti & Elio Jannelli & Petronilla Fragiacomo, 2023. "Hydrogen Refueling Process: Theory, Modeling, and In-Force Applications," Energies, MDPI, vol. 16(6), pages 1-31, March.
    16. Tsiklios, C. & Hermesmann, M. & Müller, T.E., 2022. "Hydrogen transport in large-scale transmission pipeline networks: Thermodynamic and environmental assessment of repurposed and new pipeline configurations," Applied Energy, Elsevier, vol. 327(C).
    17. Qyyum, Muhammad Abdul & Dickson, Rofice & Ali Shah, Syed Fahad & Niaz, Haider & Khan, Amin & Liu, J. Jay & Lee, Moonyong, 2021. "Availability, versatility, and viability of feedstocks for hydrogen production: Product space perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    18. Raluca-Andreea Felseghi & Elena Carcadea & Maria Simona Raboaca & Cătălin Nicolae TRUFIN & Constantin Filote, 2019. "Hydrogen Fuel Cell Technology for the Sustainable Future of Stationary Applications," Energies, MDPI, vol. 12(23), pages 1-28, December.
    19. Bhogilla, Satya Sekhar, 2021. "Numerical simulation of metal hydride based thermal energy storage system for concentrating solar power plants," Renewable Energy, Elsevier, vol. 172(C), pages 1013-1020.
    20. Qusay Hassan & Itimad D. J. Azzawi & Aws Zuhair Sameen & Hayder M. Salman, 2023. "Hydrogen Fuel Cell Vehicles: Opportunities and Challenges," Sustainability, MDPI, vol. 15(15), pages 1-26, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:390:y:2025:i:c:s0306261925005288. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.