IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v390y2025ics0306261925005288.html
   My bibliography  Save this article

Experimental study and performance evaluation of a large-scale multistage metal hydride-based hydrogen compressor

Author

Listed:
  • Parida, Abhishek
  • Kumar, Alok
  • Muthukumar, P.
  • Dalal, Amaresh
  • Kumar, Shanta

Abstract

Hydrogen is crucial for a sustainable energy future, serving as a clean energy carrier. Efficient compression is vital for its effective storage and transport. This study details the design and development of an industrial-scale setup for green hydrogen compression using a Metal Hydride Hydrogen Compressor (MHHC) integrated with renewable thermal system. The system is designed to compress hydrogen from an initial pressure of 10–20 bar to over 250 bar, utilizing thermal energy inputs available at temperature below 100 °C. In this study, 550 g of hydrogen was compressed to 300 bar within the reactor in three stages between the temperature range of 5–91.2 °C, making it suitable for coupling with solar thermal systems. The stage 1 reactor, containing 25 kg of La0.8Ce0.2Ni5, absorbed 307 g of hydrogen in 44.6 min and transferred 288 g (93.8% reversibility) to the stage 2 reactor, which contained an equivalent mass of La0.5Ce0.5Ni4Fe. Finally, 275.5 g of hydrogen was transferred to the stage 3 reactor, consisting of Ti0.8Zr0.2CrMn0.3Fe0.6Ni0.1. The absorbed hydrogen was then heated to 91.2 °C to attain a pressure of 300 bar. The system required 36.2 MJ (10.1 kWh) of thermal energy to complete one compression cycle for 275.5 g of hydrogen, achieving a first law efficiency of ∼5%. At a Hydrogen Refueling Station (HRS) using the developed MHHC system, refilling a Type I H2 cylinder up to 155 bar would require four refills transferring about 466 g of hydrogen in 34.34 min.

Suggested Citation

  • Parida, Abhishek & Kumar, Alok & Muthukumar, P. & Dalal, Amaresh & Kumar, Shanta, 2025. "Experimental study and performance evaluation of a large-scale multistage metal hydride-based hydrogen compressor," Applied Energy, Elsevier, vol. 390(C).
  • Handle: RePEc:eee:appene:v:390:y:2025:i:c:s0306261925005288
    DOI: 10.1016/j.apenergy.2025.125798
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261925005288
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.125798?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Feng, Penghui & Liu, Yang & Ayub, Iqra & Wu, Zhen & Yang, Fusheng & Zhang, Zaoxiao, 2019. "Techno-economic analysis of screening metal hydride pairs for a 910 MWhth thermal energy storage system," Applied Energy, Elsevier, vol. 242(C), pages 148-156.
    2. Sdanghi, G. & Maranzana, G. & Celzard, A. & Fierro, V., 2019. "Review of the current technologies and performances of hydrogen compression for stationary and automotive applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 150-170.
    3. Ye, Yang & Zhu, Hongxing & Cheng, Honghui & Miao, Hong & Ding, Jing & Wang, Weilong, 2023. "Performance optimization of metal hydride hydrogen storage reactors based on PCM thermal management," Applied Energy, Elsevier, vol. 338(C).
    4. Melnik, Daniel & Bürger, Inga & Mitzel, Jens & Käß, Julian & Sarkezi-Selsky, Patrick & Jahnke, Thomas & Knöri, Torsten, 2024. "Energy efficient cold start of a Polymer Electrolyte Membrane Fuel Cell coupled to a thermochemical metal hydride preheater," Applied Energy, Elsevier, vol. 359(C).
    5. Dong, Xiaofei & Zhao, Hongxia & Li, Hailong & Fucucci, Giacomo & Zheng, Qingrong & Zhao, Honghua & Pu, Jinhuan, 2024. "A novel design of a metal hydride reactor integrated with phase change material for H2 storage," Applied Energy, Elsevier, vol. 367(C).
    6. Wang, Di & Wang, Yuqi & Wang, Feng & Zheng, Shuaishuai & Guan, Sinan & Zheng, Lan & Wu, Le & Yang, Xin & Lv, Ming & Zhang, Zaoxiao, 2022. "Optimal design of disc mini-channel metal hydride reactor with high hydrogen storage efficiency," Applied Energy, Elsevier, vol. 308(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maggini, Marco & Facci, Andrea L. & Falcucci, Giacomo & Ubertini, Stefano, 2025. "Numerical Modeling of Metal Hydride-Phase Change Material Hydrogen Storage Systems with Increased Heat Exchange surface area," Applied Energy, Elsevier, vol. 378(PA).
    2. Yang Ye & Ziyang Zhang & Yuanyuan Zhang & Jingjing Liu & Kai Yan & Honghui Cheng, 2024. "Parametric Analysis of a Novel Array-Type Hydrogen Storage Reactor with External Water-Cooled Jacket Heat Exchange," Energies, MDPI, vol. 17(21), pages 1-12, October.
    3. Zhao, Yaling & Zhao, Bin & Yao, Yanchen & Jia, Xiaohan & Peng, Xueyuan, 2024. "Experimental study and sensitivity analysis of performance for a hydrogen diaphragm compressor," Renewable Energy, Elsevier, vol. 237(PD).
    4. Meryem Sena Akkus, 2022. "Investigation of Hydrogen Production Performance Using Nanoporous NiCr and NiV Alloys in KBH 4 Hydrolysis," Energies, MDPI, vol. 15(24), pages 1-15, December.
    5. Xu, Haisong & Wang, Lei & Xie, Lei & Su, Hongye & Lu, Jianshan & Liu, Zhiyang, 2024. "Freeze start of proton exchange membrane fuel cell systems with closed-loop purging and improved voltage consistency," Applied Energy, Elsevier, vol. 374(C).
    6. Guo, Yi & Tang, Yuming & Wang, Lingzi & Wang, Yuli & Peng, Xueyuan, 2024. "Optimal design of operating frequency for the ionic liquid compressor applied in hydrogen storage," Renewable Energy, Elsevier, vol. 237(PB).
    7. Shi, Tao & Xu, Huijin, 2022. "Integration of hydrogen storage and heat storage in thermochemical reactors enhanced with optimized topological structures: Charging process," Applied Energy, Elsevier, vol. 327(C).
    8. Sun, Mingjia & Zhang, Yumeng & Liu, Luyao & Nian, Xingheng & Zhang, Hanfei & Duan, Liqiang, 2025. "Dynamic performance analysis of hydrogen production and hot standby dual-mode system via proton exchange membrane electrolyzer and phase change material-based heat storage," Applied Energy, Elsevier, vol. 377(PC).
    9. Krishna, K. Venkata & Kanti, Praveen Kumar & Maiya, M.P., 2024. "A novel fin efficiency concept to optimize solid state hydrogen storage reactor," Energy, Elsevier, vol. 288(C).
    10. Montazerinejad, H. & Eicker, U., 2022. "Recent development of heat and power generation using renewable fuels: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    11. Giuseppe Sdanghi & Gaël Maranzana & Alain Celzard & Vanessa Fierro, 2020. "Towards Non-Mechanical Hybrid Hydrogen Compression for Decentralized Hydrogen Facilities," Energies, MDPI, vol. 13(12), pages 1-27, June.
    12. Zhiqian Li & Min Zhang & Huijin Xu, 2025. "Revealing the Roles of Heat Transfer, Thermal Dynamics, and Reaction Kinetics in Hydrogenation/Dehydrogenation Processes for Mg-Based Metal Hydride Hydrogen Storage," Energies, MDPI, vol. 18(11), pages 1-32, June.
    13. Nicolas, V. & Sdanghi, G. & Mozet, K. & Schaefer, S. & Maranzana, G. & Celzard, A. & Fierro, V., 2022. "Numerical simulation of a thermally driven hydrogen compressor as a performance optimization tool," Applied Energy, Elsevier, vol. 323(C).
    14. Laugs, Gideon A.H. & Benders, René M.J. & Moll, Henri C., 2024. "Maximizing self-sufficiency and minimizing grid interaction: Combining electric and molecular energy storage for decentralized balancing of variable renewable energy in local energy systems," Renewable Energy, Elsevier, vol. 229(C).
    15. Genovese, Matteo & Fragiacomo, Petronilla, 2021. "Parametric technical-economic investigation of a pressurized hydrogen electrolyzer unit coupled with a storage compression system," Renewable Energy, Elsevier, vol. 180(C), pages 502-515.
    16. Rafael Pereira & Vitor Monteiro & Joao L. Afonso & Joni Teixeira, 2024. "Hydrogen Refueling Stations: A Review of the Technology Involved from Key Energy Consumption Processes to Related Energy Management Strategies," Energies, MDPI, vol. 17(19), pages 1-16, September.
    17. Morales-Ospino, R. & Celzard, A. & Fierro, V., 2023. "Strategies to recover and minimize boil-off losses during liquid hydrogen storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    18. Aadhithiyan, A.K. & Sreeraj, R. & Anbarasu, S., 2025. "Enrichment of energy interaction and management in helical tubes configured hydride-hydrogen storage devices: An energy and economic overview," Renewable Energy, Elsevier, vol. 242(C).
    19. Guo, Leilei & Wu, Zhen & Li, Ruiqing & Huang, Xianchun & Wang, Bofei & Yang, Fusheng & Zhang, Zaoxiao, 2024. "New insights into the impurity transport and separation behaviours during metal hydride dehydrogenation for ultra-pure hydrogen," Applied Energy, Elsevier, vol. 353(PB).
    20. Ibrahim, Omar S. & Singlitico, Alessandro & Proskovics, Roberts & McDonagh, Shane & Desmond, Cian & Murphy, Jerry D., 2022. "Dedicated large-scale floating offshore wind to hydrogen: Assessing design variables in proposed typologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:390:y:2025:i:c:s0306261925005288. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.