IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v382y2025ics0306261924025339.html
   My bibliography  Save this article

Designing model predictive control strategies for grid-interactive water heaters for load shifting applications

Author

Listed:
  • Buechler, Elizabeth
  • Goldin, Aaron
  • Rajagopal, Ram

Abstract

Model predictive control (MPC) strategies allow residential water heaters to shift load in response to dynamic price signals. Crucially, the performance of such strategies is sensitive to various algorithm design choices. In this work, we develop a framework for implementing model predictive controls on residential water heaters for load shifting applications. We use this framework to analyze how four different design factors affect control performance and thermal comfort: (i) control model fidelity, (ii) temperature sensor configuration, (iii) water draw estimation methodology, and (iv) water draw forecasting methodology. We propose new methods for estimating water draw patterns without the use of a flow meter. MPC strategies are compared under two different time-varying price signals through simulations using a high-fidelity tank model and real-world draw data. Results show that control model fidelity and the number of temperature sensors have the largest impact on electricity costs, while the water draw forecasting methodology has a significant impact on thermal comfort and the frequency of runout events. Results provide practical insight into effective MPC design for water heaters in home energy management systems.

Suggested Citation

  • Buechler, Elizabeth & Goldin, Aaron & Rajagopal, Ram, 2025. "Designing model predictive control strategies for grid-interactive water heaters for load shifting applications," Applied Energy, Elsevier, vol. 382(C).
  • Handle: RePEc:eee:appene:v:382:y:2025:i:c:s0306261924025339
    DOI: 10.1016/j.apenergy.2024.125149
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924025339
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.125149?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Michael J. Ritchie & Jacobus A.A. Engelbrecht & Marthinus J. Booysen, 2021. "Practically-Achievable Energy Savings with the Optimal Control of Stratified Water Heaters with Predicted Usage," Energies, MDPI, vol. 14(7), pages 1-23, April.
    2. Zinsmeister, Daniel & Tzscheutschler, Peter & Perić, Vedran S. & Goebel, Christoph, 2023. "Stratified thermal energy storage model with constant layer volume for predictive control — Formulation, comparison, and empirical validation," Renewable Energy, Elsevier, vol. 219(P2).
    3. Jin, Xin & Baker, Kyri & Christensen, Dane & Isley, Steven, 2017. "Foresee: A user-centric home energy management system for energy efficiency and demand response," Applied Energy, Elsevier, vol. 205(C), pages 1583-1595.
    4. Blonsky, Michael & McKenna, Killian & Maguire, Jeff & Vincent, Tyrone, 2022. "Home energy management under realistic and uncertain conditions: A comparison of heuristic, deterministic, and stochastic control methods," Applied Energy, Elsevier, vol. 325(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jia, Kunqi & Guo, Ge & Xiao, Jucheng & Zhou, Huan & Wang, Zhihua & He, Guangyu, 2019. "Data compression approach for the home energy management system," Applied Energy, Elsevier, vol. 247(C), pages 643-656.
    2. Nizami, M.S.H. & Hossain, M.J. & Amin, B.M. Ruhul & Fernandez, Edstan, 2020. "A residential energy management system with bi-level optimization-based bidding strategy for day-ahead bi-directional electricity trading," Applied Energy, Elsevier, vol. 261(C).
    3. Correa-Florez, Carlos Adrian & Michiorri, Andrea & Kariniotakis, Georges, 2018. "Robust optimization for day-ahead market participation of smart-home aggregators," Applied Energy, Elsevier, vol. 229(C), pages 433-445.
    4. Zhao, Liyuan & Yang, Ting & Li, Wei & Zomaya, Albert Y., 2022. "Deep reinforcement learning-based joint load scheduling for household multi-energy system," Applied Energy, Elsevier, vol. 324(C).
    5. Hall, Rebecca & Kenway, Steven & O'Brien, Katherine & Memon, Fayyaz, 2025. "Quantification of residential water-related energy needs cohesion, validation and global representation to unlock efficiency gains," Renewable and Sustainable Energy Reviews, Elsevier, vol. 207(C).
    6. Mak, Davye & Choi, Dae-Hyun, 2020. "Optimization framework for coordinated operation of home energy management system and Volt-VAR optimization in unbalanced active distribution networks considering uncertainties," Applied Energy, Elsevier, vol. 276(C).
    7. Earle, Lieko & Maguire, Jeff & Munankarmi, Prateek & Roberts, David, 2023. "The impact of energy-efficiency upgrades and other distributed energy resources on a residential neighborhood-scale electrification retrofit," Applied Energy, Elsevier, vol. 329(C).
    8. Wang, Jing & Munankarmi, Prateek & Maguire, Jeff & Shi, Chengnan & Zuo, Wangda & Roberts, David & Jin, Xin, 2022. "Carbon emission responsive building control: A case study with an all-electric residential community in a cold climate," Applied Energy, Elsevier, vol. 314(C).
    9. Azuatalam, Donald & Paridari, Kaveh & Ma, Yiju & Förstl, Markus & Chapman, Archie C. & Verbič, Gregor, 2019. "Energy management of small-scale PV-battery systems: A systematic review considering practical implementation, computational requirements, quality of input data and battery degradation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 555-570.
    10. Nizami, Sohrab & Tushar, Wayes & Hossain, M.J. & Yuen, Chau & Saha, Tapan & Poor, H. Vincent, 2022. "Transactive energy for low voltage residential networks: A review," Applied Energy, Elsevier, vol. 323(C).
    11. Killian, M. & Zauner, M. & Kozek, M., 2018. "Comprehensive smart home energy management system using mixed-integer quadratic-programming," Applied Energy, Elsevier, vol. 222(C), pages 662-672.
    12. Michael J. Ritchie & Jacobus A. A. Engelbrecht & Marthinus J. Booysen, 2022. "Centrally Adapted Optimal Control of Multiple Electric Water Heaters," Energies, MDPI, vol. 15(4), pages 1-24, February.
    13. Jiyong Park & Taeyoung Jin & Sungin Lee & Jongroul Woo, 2021. "Industrial Electrification and Efficiency: Decomposition Evidence from the Korean Industrial Sector," Energies, MDPI, vol. 14(16), pages 1-18, August.
    14. da Fonseca, André L.A. & Chvatal, Karin M.S. & Fernandes, Ricardo A.S., 2021. "Thermal comfort maintenance in demand response programs: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    15. Tuomela, Sanna & de Castro Tomé, Mauricio & Iivari, Netta & Svento, Rauli, 2021. "Impacts of home energy management systems on electricity consumption," Applied Energy, Elsevier, vol. 299(C).
    16. Kanakadhurga, Dharmaraj & Prabaharan, Natarajan, 2022. "Peer-to-Peer trading with Demand Response using proposed smart bidding strategy," Applied Energy, Elsevier, vol. 327(C).
    17. Chin, Jun-Xing & Baker, Kyri & Hug, Gabriela, 2021. "Consumer privacy protection using flexible thermal loads: Theoretical limits and practical considerations," Applied Energy, Elsevier, vol. 281(C).
    18. Ottavia Valentini & Nikoleta Andreadou & Paolo Bertoldi & Alexandre Lucas & Iolanda Saviuc & Evangelos Kotsakis, 2022. "Demand Response Impact Evaluation: A Review of Methods for Estimating the Customer Baseline Load," Energies, MDPI, vol. 15(14), pages 1-36, July.
    19. Blonsky, Michael & Maguire, Jeff & McKenna, Killian & Cutler, Dylan & Balamurugan, Sivasathya Pradha & Jin, Xin, 2021. "OCHRE: The Object-oriented, Controllable, High-resolution Residential Energy Model for Dynamic Integration Studies," Applied Energy, Elsevier, vol. 290(C).
    20. Cai, Jie & Zhang, Hao & Jin, Xing, 2019. "Aging-aware predictive control of PV-battery assets in buildings," Applied Energy, Elsevier, vol. 236(C), pages 478-488.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:382:y:2025:i:c:s0306261924025339. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.